{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Unary.Unique.Setoid.Properties where
open import Data.Fin.Base using (Fin)
open import Data.List.Base
open import Data.List.Relation.Binary.Disjoint.Setoid
open import Data.List.Relation.Binary.Disjoint.Setoid.Properties
open import Data.List.Relation.Unary.All as All using (All; []; _∷_)
open import Data.List.Relation.Unary.AllPairs as AllPairs using (AllPairs)
open import Data.List.Relation.Unary.Unique.Setoid
import Data.List.Relation.Unary.AllPairs.Properties as AllPairs
open import Data.Nat.Base
open import Function using (_∘_)
open import Relation.Binary using (Rel; Setoid)
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Relation.Unary using (Pred; Decidable)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using (contraposition)
module _ {a b ℓ₁ ℓ₂} (S : Setoid a ℓ₁) (R : Setoid b ℓ₂) where
open Setoid S renaming (Carrier to A; _≈_ to _≈₁_)
open Setoid R renaming (Carrier to B; _≈_ to _≈₂_)
map⁺ : ∀ {f} → (∀ {x y} → f x ≈₂ f y → x ≈₁ y) →
∀ {xs} → Unique S xs → Unique R (map f xs)
map⁺ inj xs! = AllPairs.map⁺ (AllPairs.map (contraposition inj) xs!)
module _ {a ℓ} (S : Setoid a ℓ) where
++⁺ : ∀ {xs ys} → Unique S xs → Unique S ys → Disjoint S xs ys → Unique S (xs ++ ys)
++⁺ xs! ys! xs#ys = AllPairs.++⁺ xs! ys! (Disjoint⇒AllAll S xs#ys)
module _ {a ℓ} (S : Setoid a ℓ) where
concat⁺ : ∀ {xss} → All (Unique S) xss → AllPairs (Disjoint S) xss → Unique S (concat xss)
concat⁺ xss! xss# = AllPairs.concat⁺ xss! (AllPairs.map (Disjoint⇒AllAll S) xss#)
module _ {a ℓ} (S : Setoid a ℓ) where
drop⁺ : ∀ {xs} n → Unique S xs → Unique S (drop n xs)
drop⁺ = AllPairs.drop⁺
take⁺ : ∀ {xs} n → Unique S xs → Unique S (take n xs)
take⁺ = AllPairs.take⁺
module _ {a ℓ} (S : Setoid a ℓ) where
open Setoid S using (_≈_; _≉_) renaming (Carrier to A)
applyUpTo⁺₁ : ∀ f n → (∀ {i j} → i < j → j < n → f i ≉ f j) →
Unique S (applyUpTo f n)
applyUpTo⁺₁ = AllPairs.applyUpTo⁺₁
applyUpTo⁺₂ : ∀ f n → (∀ i j → f i ≉ f j) →
Unique S (applyUpTo f n)
applyUpTo⁺₂ = AllPairs.applyUpTo⁺₂
module _ {a ℓ} (S : Setoid a ℓ) where
open Setoid S using (_≈_; _≉_) renaming (Carrier to A)
applyDownFrom⁺₁ : ∀ f n → (∀ {i j} → j < i → i < n → f i ≉ f j) →
Unique S (applyDownFrom f n)
applyDownFrom⁺₁ = AllPairs.applyDownFrom⁺₁
applyDownFrom⁺₂ : ∀ f n → (∀ i j → f i ≉ f j) →
Unique S (applyDownFrom f n)
applyDownFrom⁺₂ = AllPairs.applyDownFrom⁺₂
module _ {a ℓ} (S : Setoid a ℓ) where
open Setoid S renaming (Carrier to A)
tabulate⁺ : ∀ {n} {f : Fin n → A} → (∀ {i j} → f i ≈ f j → i ≡ j) →
Unique S (tabulate f)
tabulate⁺ f-inj = AllPairs.tabulate⁺ (_∘ f-inj)
module _ {a ℓ} (S : Setoid a ℓ) {p} {P : Pred _ p} (P? : Decidable P) where
open Setoid S renaming (Carrier to A)
filter⁺ : ∀ {xs} → Unique S xs → Unique S (filter P? xs)
filter⁺ = AllPairs.filter⁺ P?