------------------------------------------------------------------------
-- The Agda standard library
--
-- Lexicographic products of binary relations
------------------------------------------------------------------------

-- The definition of lexicographic product used here is suitable if
-- the left-hand relation is a strict partial order.

{-# OPTIONS --without-K --safe #-}

module Data.Product.Relation.Binary.Lex.Strict where

open import Data.Product
open import Data.Product.Relation.Binary.Pointwise.NonDependent as Pointwise
  using (Pointwise)
open import Data.Sum.Base using (inj₁; inj₂; _-⊎-_; [_,_])
open import Data.Empty
open import Function
open import Induction.WellFounded
open import Level
open import Relation.Nullary
open import Relation.Nullary.Product
open import Relation.Nullary.Sum
open import Relation.Binary
open import Relation.Binary.Consequences
open import Relation.Binary.PropositionalEquality using (_≡_; refl)

private
  variable
    a b ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level
    A : Set a
    B : Set b

------------------------------------------------------------------------
-- A lexicographic ordering over products

×-Lex : (_≈₁_ : Rel A ℓ₁) (_<₁_ : Rel A ℓ₂) (_≤₂_ : Rel B ℓ₃) 
        Rel (A × B) _
×-Lex _≈₁_ _<₁_ _≤₂_ =
  (_<₁_ on proj₁) -⊎- (_≈₁_ on proj₁) -×- (_≤₂_ on proj₂)

------------------------------------------------------------------------
-- Some properties which are preserved by ×-Lex (under certain
-- assumptions).

×-reflexive : (_≈₁_ : Rel A ℓ₁) (_∼₁_ : Rel A ℓ₂)
              {_≈₂_ : Rel B ℓ₃} (_≤₂_ : Rel B ℓ₄) 
              _≈₂_  _≤₂_  (Pointwise _≈₁_ _≈₂_)  (×-Lex _≈₁_ _∼₁_ _≤₂_)
×-reflexive _ _ _ refl₂ = λ x≈y 
  inj₂ (proj₁ x≈y , refl₂ (proj₂ x≈y))

module _ {_≈₁_ : Rel A ℓ₁} {_<₁_ : Rel A ℓ₂} {_<₂_ : Rel B ℓ₃} where

  private
    _<ₗₑₓ_ = ×-Lex _≈₁_ _<₁_ _<₂_


  ×-transitive : IsEquivalence _≈₁_  _<₁_ Respects₂ _≈₁_  Transitive _<₁_ 
                 Transitive _<₂_  Transitive _<ₗₑₓ_
  ×-transitive eq₁ resp₁ trans₁ trans₂ = trans
    where
    module Eq₁ = IsEquivalence eq₁

    trans : Transitive _<ₗₑₓ_
    trans (inj₁ x₁<y₁) (inj₁ y₁<z₁) = inj₁ (trans₁ x₁<y₁ y₁<z₁)
    trans (inj₁ x₁<y₁) (inj₂ y≈≤z)  =
      inj₁ (proj₁ resp₁ (proj₁ y≈≤z) x₁<y₁)
    trans (inj₂ x≈≤y)  (inj₁ y₁<z₁) =
      inj₁ (proj₂ resp₁ (Eq₁.sym $ proj₁ x≈≤y) y₁<z₁)
    trans (inj₂ x≈≤y)  (inj₂ y≈≤z)  =
      inj₂ ( Eq₁.trans (proj₁ x≈≤y) (proj₁ y≈≤z)
           , trans₂    (proj₂ x≈≤y) (proj₂ y≈≤z))

  ×-asymmetric : Symmetric _≈₁_  _<₁_ Respects₂ _≈₁_ 
                 Asymmetric _<₁_  Asymmetric _<₂_ 
                 Asymmetric _<ₗₑₓ_
  ×-asymmetric sym₁ resp₁ asym₁ asym₂ = asym
    where
    irrefl₁ : Irreflexive _≈₁_ _<₁_
    irrefl₁ = asym⟶irr resp₁ sym₁ asym₁

    asym : Asymmetric _<ₗₑₓ_
    asym (inj₁ x₁<y₁) (inj₁ y₁<x₁) = asym₁ x₁<y₁ y₁<x₁
    asym (inj₁ x₁<y₁) (inj₂ y≈<x)  = irrefl₁ (sym₁ $ proj₁ y≈<x) x₁<y₁
    asym (inj₂ x≈<y)  (inj₁ y₁<x₁) = irrefl₁ (sym₁ $ proj₁ x≈<y) y₁<x₁
    asym (inj₂ x≈<y)  (inj₂ y≈<x)  = asym₂ (proj₂ x≈<y) (proj₂ y≈<x)

  ×-total₁ : Total _<₁_  Total _<ₗₑₓ_
  ×-total₁ total₁ x y with total₁ (proj₁ x) (proj₁ y)
  ... | inj₁ x₁<y₁ = inj₁ (inj₁ x₁<y₁)
  ... | inj₂ x₁>y₁ = inj₂ (inj₁ x₁>y₁)

  ×-total₂ : Symmetric _≈₁_ 
             Trichotomous _≈₁_ _<₁_  Total _<₂_ 
             Total _<ₗₑₓ_
  ×-total₂ sym tri₁ total₂ x y with tri₁ (proj₁ x) (proj₁ y)
  ... | tri< x₁<y₁ _ _ = inj₁ (inj₁ x₁<y₁)
  ... | tri> _ _ y₁<x₁ = inj₂ (inj₁ y₁<x₁)
  ... | tri≈ _ x₁≈y₁ _ with total₂ (proj₂ x) (proj₂ y)
  ...   | inj₁ x₂≤y₂ = inj₁ (inj₂ (x₁≈y₁     , x₂≤y₂))
  ...   | inj₂ y₂≤x₂ = inj₂ (inj₂ (sym x₁≈y₁ , y₂≤x₂))

  ×-decidable : Decidable _≈₁_  Decidable _<₁_  Decidable _<₂_ 
                Decidable _<ₗₑₓ_
  ×-decidable dec-≈₁ dec-<₁ dec-≤₂ x y =
    dec-<₁ (proj₁ x) (proj₁ y)
      ⊎-dec
    (dec-≈₁ (proj₁ x) (proj₁ y)
       ×-dec
     dec-≤₂ (proj₂ x) (proj₂ y))

module _ {_≈₁_ : Rel A ℓ₁} {_<₁_ : Rel A ℓ₂}
         {_≈₂_ : Rel B ℓ₃} {_<₂_ : Rel B ℓ₄} where

  private
    _≋_    = Pointwise _≈₁_ _≈₂_
    _<ₗₑₓ_ = ×-Lex _≈₁_ _<₁_ _<₂_

  ×-irreflexive : Irreflexive _≈₁_ _<₁_  Irreflexive _≈₂_ _<₂_ 
                  Irreflexive (Pointwise _≈₁_ _≈₂_) _<ₗₑₓ_
  ×-irreflexive ir₁ ir₂ x≈y (inj₁ x₁<y₁) = ir₁ (proj₁ x≈y) x₁<y₁
  ×-irreflexive ir₁ ir₂ x≈y (inj₂ x≈<y)  = ir₂ (proj₂ x≈y) (proj₂ x≈<y)

  ×-antisymmetric : Symmetric _≈₁_  Irreflexive _≈₁_ _<₁_  Asymmetric _<₁_ 
                    Antisymmetric _≈₂_ _<₂_  Antisymmetric _≋_ _<ₗₑₓ_
  ×-antisymmetric sym₁ irrefl₁ asym₁ antisym₂ = antisym
    where
    antisym : Antisymmetric _≋_ _<ₗₑₓ_
    antisym (inj₁ x₁<y₁) (inj₁ y₁<x₁) =
      ⊥-elim $ asym₁ x₁<y₁ y₁<x₁
    antisym (inj₁ x₁<y₁) (inj₂ y≈≤x)  =
      ⊥-elim $ irrefl₁ (sym₁ $ proj₁ y≈≤x) x₁<y₁
    antisym (inj₂ x≈≤y)  (inj₁ y₁<x₁) =
      ⊥-elim $ irrefl₁ (sym₁ $ proj₁ x≈≤y) y₁<x₁
    antisym (inj₂ x≈≤y)  (inj₂ y≈≤x)  =
      proj₁ x≈≤y , antisym₂ (proj₂ x≈≤y) (proj₂ y≈≤x)

  ×-respects₂ : IsEquivalence _≈₁_ 
                _<₁_ Respects₂ _≈₁_  _<₂_ Respects₂ _≈₂_ 
                _<ₗₑₓ_ Respects₂ _≋_
  ×-respects₂ eq₁ resp₁ resp₂ = respʳ , respˡ
    where
    open IsEquivalence eq₁

    respʳ : _<ₗₑₓ_ Respectsʳ _≋_
    respʳ y≈y' (inj₁ x₁<y₁) = inj₁ (proj₁ resp₁ (proj₁ y≈y') x₁<y₁)
    respʳ y≈y' (inj₂ x≈<y)  =
      inj₂ ( trans (proj₁ x≈<y) (proj₁ y≈y')
           , proj₁ resp₂ (proj₂ y≈y') (proj₂ x≈<y) )

    respˡ : _<ₗₑₓ_ Respectsˡ _≋_
    respˡ x≈x' (inj₁ x₁<y₁) = inj₁ (proj₂ resp₁ (proj₁ x≈x') x₁<y₁)
    respˡ x≈x' (inj₂ x≈<y)  =
      inj₂ ( trans (sym $ proj₁ x≈x') (proj₁ x≈<y)
           , proj₂ resp₂ (proj₂ x≈x') (proj₂ x≈<y) )

  ×-compare : Symmetric _≈₁_ 
              Trichotomous _≈₁_ _<₁_  Trichotomous _≈₂_ _<₂_ 
              Trichotomous _≋_ _<ₗₑₓ_
  ×-compare sym₁ cmp₁ cmp₂ (x₁ , x₂) (y₁ , y₂) with cmp₁ x₁ y₁
  ... | (tri< x₁<y₁ x₁≉y₁ x₁≯y₁) =
    tri< (inj₁ x₁<y₁)
         (x₁≉y₁  proj₁)
         [ x₁≯y₁ , x₁≉y₁  sym₁  proj₁ ]
  ... | (tri> x₁≮y₁ x₁≉y₁ x₁>y₁) =
    tri> [ x₁≮y₁ , x₁≉y₁  proj₁ ]
         (x₁≉y₁  proj₁)
         (inj₁ x₁>y₁)
  ... | (tri≈ x₁≮y₁ x₁≈y₁ x₁≯y₁) with cmp₂ x₂ y₂
  ...   | (tri< x₂<y₂ x₂≉y₂ x₂≯y₂) =
    tri< (inj₂ (x₁≈y₁ , x₂<y₂))
         (x₂≉y₂  proj₂)
         [ x₁≯y₁ , x₂≯y₂  proj₂ ]
  ...   | (tri> x₂≮y₂ x₂≉y₂ x₂>y₂) =
    tri> [ x₁≮y₁ , x₂≮y₂  proj₂ ]
         (x₂≉y₂  proj₂)
         (inj₂ (sym₁ x₁≈y₁ , x₂>y₂))
  ...   | (tri≈ x₂≮y₂ x₂≈y₂ x₂≯y₂) =
    tri≈ [ x₁≮y₁ , x₂≮y₂  proj₂ ]
         (x₁≈y₁ , x₂≈y₂)
         [ x₁≯y₁ , x₂≯y₂  proj₂ ]

module _ {_<₁_ : Rel A ℓ₁} {_<₂_ : Rel B ℓ₂} where

  -- Currently only proven for propositional equality
  -- (unsure how to satisfy the termination checker for arbitrary equalities)

  private
    _<ₗₑₓ_ = ×-Lex _≡_ _<₁_ _<₂_

  ×-wellFounded : WellFounded _<₁_ 
                  WellFounded _<₂_ 
                  WellFounded _<ₗₑₓ_
  ×-wellFounded wf₁ wf₂ (x , y) = acc (×-acc (wf₁ x) (wf₂ y))
    where
    ×-acc :  {x y} 
            Acc _<₁_ x  Acc _<₂_ y 
            WfRec _<ₗₑₓ_ (Acc _<ₗₑₓ_) (x , y)
    ×-acc (acc rec₁) acc₂ (u , v) (inj₁ u<x)
      = acc (×-acc (rec₁ u u<x) (wf₂ v))
    ×-acc acc₁ (acc rec₂) (u , v) (inj₂ (refl , v<y))
      = acc (×-acc acc₁ (rec₂ v v<y))

------------------------------------------------------------------------
-- Collections of properties which are preserved by ×-Lex.

module _ {_≈₁_ : Rel A ℓ₁} {_<₁_ : Rel A ℓ₂}
         {_≈₂_ : Rel B ℓ₃} {_<₂_ : Rel B ℓ₄} where

  private
    _≋_    = Pointwise _≈₁_ _≈₂_
    _<ₗₑₓ_ = ×-Lex _≈₁_ _<₁_ _<₂_

  ×-isPreorder : IsPreorder _≈₁_ _<₁_ 
                 IsPreorder _≈₂_ _<₂_ 
                 IsPreorder _≋_ _<ₗₑₓ_
  ×-isPreorder pre₁ pre₂ =
    record
      { isEquivalence = Pointwise.×-isEquivalence
                          (isEquivalence pre₁) (isEquivalence pre₂)
      ; reflexive     = ×-reflexive _≈₁_ _<₁_ _<₂_ (reflexive pre₂)
      ; trans         = ×-transitive {_<₂_ = _<₂_}
                          (isEquivalence pre₁) (∼-resp-≈ pre₁)
                          (trans pre₁) (trans pre₂)
      }
    where open IsPreorder

  ×-isStrictPartialOrder : IsStrictPartialOrder _≈₁_ _<₁_ 
                           IsStrictPartialOrder _≈₂_ _<₂_ 
                           IsStrictPartialOrder _≋_ _<ₗₑₓ_
  ×-isStrictPartialOrder spo₁ spo₂ =
    record
      { isEquivalence = Pointwise.×-isEquivalence
                          (isEquivalence spo₁) (isEquivalence spo₂)
      ; irrefl        = ×-irreflexive {_<₁_ = _<₁_} {_<₂_ = _<₂_}
                          (irrefl spo₁) (irrefl spo₂)
      ; trans         = ×-transitive {_<₁_ = _<₁_} {_<₂_ = _<₂_}
                          (isEquivalence spo₁)
                          (<-resp-≈ spo₁) (trans spo₁)
                          (trans spo₂)
      ; <-resp-≈      = ×-respects₂ (isEquivalence spo₁)
                                      (<-resp-≈ spo₁)
                                      (<-resp-≈ spo₂)
      }
    where open IsStrictPartialOrder

  ×-isStrictTotalOrder : IsStrictTotalOrder _≈₁_ _<₁_ 
                         IsStrictTotalOrder _≈₂_ _<₂_ 
                         IsStrictTotalOrder _≋_ _<ₗₑₓ_
  ×-isStrictTotalOrder spo₁ spo₂ =
    record
      { isEquivalence = Pointwise.×-isEquivalence
                          (isEquivalence spo₁) (isEquivalence spo₂)
      ; trans         = ×-transitive {_<₁_ = _<₁_} {_<₂_ = _<₂_}
                          (isEquivalence spo₁)
                          (<-resp-≈ spo₁) (trans spo₁)
                          (trans spo₂)
      ; compare       = ×-compare (Eq.sym spo₁) (compare spo₁)
                                                (compare spo₂)
      }
    where open IsStrictTotalOrder

------------------------------------------------------------------------
-- "Bundles" can also be combined.

×-preorder : Preorder a ℓ₁ ℓ₂ 
             Preorder b ℓ₃ ℓ₄ 
             Preorder _ _ _
×-preorder p₁ p₂ = record
  { isPreorder = ×-isPreorder (isPreorder p₁) (isPreorder p₂)
  } where open Preorder

×-strictPartialOrder : StrictPartialOrder a ℓ₁ ℓ₂ 
                       StrictPartialOrder b ℓ₃ ℓ₄ 
                       StrictPartialOrder _ _ _
×-strictPartialOrder s₁ s₂ = record
  { isStrictPartialOrder = ×-isStrictPartialOrder
      (isStrictPartialOrder s₁) (isStrictPartialOrder s₂)
  } where open StrictPartialOrder

×-strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂ 
                     StrictTotalOrder b ℓ₃ ℓ₄ 
                     StrictTotalOrder _ _ _
×-strictTotalOrder s₁ s₂ = record
  { isStrictTotalOrder = ×-isStrictTotalOrder
      (isStrictTotalOrder s₁) (isStrictTotalOrder s₂)
  } where open StrictTotalOrder


------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.

-- Version 0.15

_×-irreflexive_ = ×-irreflexive
{-# WARNING_ON_USAGE _×-irreflexive_
"Warning: _×-irreflexive_ was deprecated in v0.15.
Please use ×-irreflexive instead."
#-}
_×-isPreorder_           = ×-isPreorder
{-# WARNING_ON_USAGE _×-isPreorder_
"Warning: _×-isPreorder_ was deprecated in v0.15.
Please use ×-isPreorder instead."
#-}
_×-isStrictPartialOrder_ = ×-isStrictPartialOrder
{-# WARNING_ON_USAGE _×-isStrictPartialOrder_
"Warning: _×-isStrictPartialOrder_ was deprecated in v0.15.
Please use ×-isStrictPartialOrder instead."
#-}
_×-isStrictTotalOrder_   = ×-isStrictTotalOrder
{-# WARNING_ON_USAGE _×-isStrictTotalOrder_
"Warning: _×-isStrictTotalOrder_ was deprecated in v0.15.
Please use ×-isStrictTotalOrder instead."
#-}
_×-preorder_             = ×-preorder
{-# WARNING_ON_USAGE _×-preorder_
"Warning: _×-preorder_ was deprecated in v0.15.
Please use ×-preorder instead."
#-}
_×-strictPartialOrder_   = ×-strictPartialOrder
{-# WARNING_ON_USAGE _×-strictPartialOrder_
"Warning: _×-strictPartialOrder_ was deprecated in v0.15.
Please use ×-strictPartialOrder instead."
#-}
_×-strictTotalOrder_     = ×-strictTotalOrder
{-# WARNING_ON_USAGE _×-strictTotalOrder_
"Warning: _×-strictTotalOrder_ was deprecated in v0.15.
Please use ×-strictTotalOrder instead."
#-}
×-≈-respects₂            = ×-respects₂
{-# WARNING_ON_USAGE ×-≈-respects₂
"Warning: ×-≈-respects₂ was deprecated in v0.15.
Please use ×-respects₂ instead."
#-}