{-# OPTIONS --without-K --safe #-}
module Algebra.Module.Bundles where
open import Algebra.Bundles
open import Algebra.Core
open import Algebra.Module.Structures
open import Algebra.Module.Definitions
open import Function.Base
open import Level
open import Relation.Binary
import Relation.Binary.Reasoning.Setoid as SetR
private
variable
r ℓr s ℓs : Level
record LeftSemimodule (semiring : Semiring r ℓr) m ℓm
: Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open Semiring semiring
infixr 7 _*ₗ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
isLeftSemimodule : IsLeftSemimodule semiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ₗ_
open IsLeftSemimodule isLeftSemimodule public
+ᴹ-commutativeMonoid : CommutativeMonoid m ℓm
+ᴹ-commutativeMonoid = record
{ isCommutativeMonoid = +ᴹ-isCommutativeMonoid
}
open CommutativeMonoid +ᴹ-commutativeMonoid public
using () renaming
( monoid to +ᴹ-monoid
; semigroup to +ᴹ-semigroup
; magma to +ᴹ-magma
; rawMagma to +ᴹ-rawMagma
; rawMonoid to +ᴹ-rawMonoid
)
record LeftModule (ring : Ring r ℓr) m ℓm : Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open Ring ring
infixr 8 -ᴹ_
infixr 7 _*ₗ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
-ᴹ_ : Op₁ Carrierᴹ
isLeftModule : IsLeftModule ring _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ₗ_
open IsLeftModule isLeftModule public
leftSemimodule : LeftSemimodule semiring m ℓm
leftSemimodule = record { isLeftSemimodule = isLeftSemimodule }
open LeftSemimodule leftSemimodule public
using ( +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma
; +ᴹ-rawMagma; +ᴹ-rawMonoid)
+ᴹ-abelianGroup : AbelianGroup m ℓm
+ᴹ-abelianGroup = record { isAbelianGroup = +ᴹ-isAbelianGroup }
open AbelianGroup +ᴹ-abelianGroup public
using () renaming (group to +ᴹ-group)
record RightSemimodule (semiring : Semiring r ℓr) m ℓm
: Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open Semiring semiring
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ᵣ_ : Opᵣ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
isRightSemimodule : IsRightSemimodule semiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ᵣ_
open IsRightSemimodule isRightSemimodule public
+ᴹ-commutativeMonoid : CommutativeMonoid m ℓm
+ᴹ-commutativeMonoid = record
{ isCommutativeMonoid = +ᴹ-isCommutativeMonoid
}
open CommutativeMonoid +ᴹ-commutativeMonoid public
using () renaming
( monoid to +ᴹ-monoid
; semigroup to +ᴹ-semigroup
; magma to +ᴹ-magma
; rawMagma to +ᴹ-rawMagma
; rawMonoid to +ᴹ-rawMonoid
)
record RightModule (ring : Ring r ℓr) m ℓm : Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open Ring ring
infixr 8 -ᴹ_
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ᵣ_ : Opᵣ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
-ᴹ_ : Op₁ Carrierᴹ
isRightModule : IsRightModule ring _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ᵣ_
open IsRightModule isRightModule public
rightSemimodule : RightSemimodule semiring m ℓm
rightSemimodule = record { isRightSemimodule = isRightSemimodule }
open RightSemimodule rightSemimodule public
using ( +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma
; +ᴹ-rawMagma; +ᴹ-rawMonoid)
+ᴹ-abelianGroup : AbelianGroup m ℓm
+ᴹ-abelianGroup = record { isAbelianGroup = +ᴹ-isAbelianGroup }
open AbelianGroup +ᴹ-abelianGroup public
using () renaming (group to +ᴹ-group)
record Bisemimodule (R-semiring : Semiring r ℓr) (S-semiring : Semiring s ℓs)
m ℓm : Set (r ⊔ s ⊔ ℓr ⊔ ℓs ⊔ suc (m ⊔ ℓm)) where
private
module R = Semiring R-semiring
module S = Semiring S-semiring
infixr 7 _*ₗ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ R.Carrier Carrierᴹ
_*ᵣ_ : Opᵣ S.Carrier Carrierᴹ
0ᴹ : Carrierᴹ
isBisemimodule : IsBisemimodule R-semiring S-semiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ₗ_ _*ᵣ_
open IsBisemimodule isBisemimodule public
leftSemimodule : LeftSemimodule R-semiring m ℓm
leftSemimodule = record { isLeftSemimodule = isLeftSemimodule }
rightSemimodule : RightSemimodule S-semiring m ℓm
rightSemimodule = record { isRightSemimodule = isRightSemimodule }
open LeftSemimodule leftSemimodule public
using ( +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma; +ᴹ-rawMagma
; +ᴹ-rawMonoid)
record Bimodule (R-ring : Ring r ℓr) (S-ring : Ring s ℓs) m ℓm
: Set (r ⊔ s ⊔ ℓr ⊔ ℓs ⊔ suc (m ⊔ ℓm)) where
private
module R = Ring R-ring
module S = Ring S-ring
infixr 7 _*ₗ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ R.Carrier Carrierᴹ
_*ᵣ_ : Opᵣ S.Carrier Carrierᴹ
0ᴹ : Carrierᴹ
-ᴹ_ : Op₁ Carrierᴹ
isBimodule : IsBimodule R-ring S-ring _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ₗ_ _*ᵣ_
open IsBimodule isBimodule public
leftModule : LeftModule R-ring m ℓm
leftModule = record { isLeftModule = isLeftModule }
rightModule : RightModule S-ring m ℓm
rightModule = record { isRightModule = isRightModule }
open LeftModule leftModule public
using ( +ᴹ-abelianGroup; +ᴹ-commutativeMonoid; +ᴹ-group; +ᴹ-monoid
; +ᴹ-semigroup; +ᴹ-magma; +ᴹ-rawMagma; +ᴹ-rawMonoid)
bisemimodule : Bisemimodule R.semiring S.semiring m ℓm
bisemimodule = record { isBisemimodule = isBisemimodule }
open Bisemimodule bisemimodule public
using (leftSemimodule; rightSemimodule)
record Semimodule (commutativeSemiring : CommutativeSemiring r ℓr) m ℓm
: Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open CommutativeSemiring commutativeSemiring
infixr 7 _*ₗ_
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ Carrier Carrierᴹ
_*ᵣ_ : Opᵣ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
isSemimodule : IsSemimodule commutativeSemiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ₗ_ _*ᵣ_
open IsSemimodule isSemimodule public
private
module L = LeftDefs Carrier _≈ᴹ_
module R = RightDefs Carrier _≈ᴹ_
bisemimodule : Bisemimodule semiring semiring m ℓm
bisemimodule = record { isBisemimodule = isBisemimodule }
open Bisemimodule bisemimodule public
using ( leftSemimodule; rightSemimodule
; +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma
; +ᴹ-rawMagma; +ᴹ-rawMonoid)
open SetR ≈ᴹ-setoid
*ₗ-comm : L.Commutative _*ₗ_
*ₗ-comm x y m = begin
x *ₗ y *ₗ m ≈⟨ ≈ᴹ-sym (*ₗ-assoc x y m) ⟩
(x * y) *ₗ m ≈⟨ *ₗ-cong (*-comm _ _) ≈ᴹ-refl ⟩
(y * x) *ₗ m ≈⟨ *ₗ-assoc y x m ⟩
y *ₗ x *ₗ m ∎
*ᵣ-comm : R.Commutative _*ᵣ_
*ᵣ-comm m x y = begin
m *ᵣ x *ᵣ y ≈⟨ *ᵣ-assoc m x y ⟩
m *ᵣ (x * y) ≈⟨ *ᵣ-cong ≈ᴹ-refl (*-comm _ _) ⟩
m *ᵣ (y * x) ≈⟨ ≈ᴹ-sym (*ᵣ-assoc m y x) ⟩
m *ᵣ y *ᵣ x ∎
record Module (commutativeRing : CommutativeRing r ℓr) m ℓm
: Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open CommutativeRing commutativeRing
infixr 8 -ᴹ_
infixr 7 _*ₗ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ Carrier Carrierᴹ
_*ᵣ_ : Opᵣ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
-ᴹ_ : Op₁ Carrierᴹ
isModule : IsModule commutativeRing _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ₗ_ _*ᵣ_
open IsModule isModule public
bimodule : Bimodule ring ring m ℓm
bimodule = record { isBimodule = isBimodule }
open Bimodule bimodule public
using ( leftModule; rightModule; leftSemimodule; rightSemimodule
; +ᴹ-abelianGroup; +ᴹ-group; +ᴹ-commutativeMonoid; +ᴹ-monoid
; +ᴹ-semigroup; +ᴹ-magma ; +ᴹ-rawMonoid; +ᴹ-rawMagma)
semimodule : Semimodule commutativeSemiring m ℓm
semimodule = record { isSemimodule = isSemimodule }
open Semimodule semimodule public using (*ₗ-comm; *ᵣ-comm)