{-# OPTIONS --without-K --safe #-}
open import Algebra
module Algebra.Properties.AbelianGroup
  {a ℓ} (G : AbelianGroup a ℓ) where
open AbelianGroup G
open import Function
open import Relation.Binary.Reasoning.Setoid setoid
open import Algebra.Properties.Group group public
xyx⁻¹≈y : ∀ x y → x ∙ y ∙ x ⁻¹ ≈ y
xyx⁻¹≈y x y = begin
  x ∙ y ∙ x ⁻¹    ≈⟨ ∙-congʳ $ comm _ _ ⟩
  y ∙ x ∙ x ⁻¹    ≈⟨ assoc _ _ _ ⟩
  y ∙ (x ∙ x ⁻¹)  ≈⟨ ∙-congˡ $ inverseʳ _ ⟩
  y ∙ ε           ≈⟨ identityʳ _ ⟩
  y               ∎
⁻¹-∙-comm : ∀ x y → x ⁻¹ ∙ y ⁻¹ ≈ (x ∙ y) ⁻¹
⁻¹-∙-comm x y = begin
  x ⁻¹ ∙ y ⁻¹ ≈˘⟨ ⁻¹-anti-homo-∙ y x ⟩
  (y ∙ x) ⁻¹  ≈⟨ ⁻¹-cong $ comm y x ⟩
  (x ∙ y) ⁻¹  ∎