{-# OPTIONS --without-K --safe #-}
open import Algebra using (Magma)
open import Data.Product using (_×_; _,_; ∃; map)
open import Relation.Binary.Definitions
module Algebra.Properties.Magma.Divisibility {a ℓ} (M : Magma a ℓ) where
open Magma M
open import Algebra.Definitions.RawMagma rawMagma public
using (_∣_; _∤_; _∣∣_; _∤∤_)
∣-respʳ : _∣_ Respectsʳ _≈_
∣-respʳ y≈z (q , qx≈y) = q , trans qx≈y y≈z
∣-respˡ : _∣_ Respectsˡ _≈_
∣-respˡ x≈z (q , qx≈y) = q , trans (∙-congˡ (sym x≈z)) qx≈y
∣-resp : _∣_ Respects₂ _≈_
∣-resp = ∣-respʳ , ∣-respˡ
x∣yx : ∀ x y → x ∣ y ∙ x
x∣yx x y = y , refl
xy≈z⇒y∣z : ∀ x y {z} → x ∙ y ≈ z → y ∣ z
xy≈z⇒y∣z x y xy≈z = ∣-respʳ xy≈z (x∣yx y x)