------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of operations on the Delay type
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe --sized-types #-}

module Codata.Delay.Properties where

open import Size
import Data.Sum.Base as Sum
import Data.Nat as 
open import Codata.Thunk using (Thunk; force)
open import Codata.Conat
open import Codata.Conat.Bisimilarity as Coℕ using (zero ; suc)
open import Codata.Delay
open import Codata.Delay.Bisimilarity
open import Function
open import Relation.Binary.PropositionalEquality as Eq using (_≡_)

module _ {a} {A : Set a} where

 length-never :  {i}  i Coℕ.⊢ length (never {A = A})  infinity
 length-never = suc λ where .force  length-never

module _ {a b} {A : Set a} {B : Set b} where

 length-map :  (f : A  B) da {i}  i Coℕ.⊢ length (map f da)  length da
 length-map f (now a)    = zero
 length-map f (later da) = suc λ where .force  length-map f (da .force)

module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where

 length-zipWith :  (f : A  B  C) da db {i} 
   i Coℕ.⊢ length (zipWith f da db)  length da  length db
 length-zipWith f (now a)      db         = length-map (f a) db
 length-zipWith f da@(later _) (now b)    = length-map  a  f a b) da
 length-zipWith f (later da)   (later db) =
   suc λ where .force   length-zipWith f (da .force) (db .force)

 map-map-fusion :  (f : A  B) (g : B  C) da {i}  
   i  map g (map f da)  map (g ∘′ f) da
 map-map-fusion f g (now a)    = now Eq.refl
 map-map-fusion f g (later da) = later λ where .force  map-map-fusion f g (da .force)

 map-unfold-fusion :  (f : B  C) n (s : A) {i} 
   i  map f (unfold n s)  unfold (Sum.map id f ∘′ n) s
 map-unfold-fusion f n s with n s
 ... | Sum.inj₁ s′ = later λ where .force  map-unfold-fusion f n s′
 ... | Sum.inj₂ b  = now Eq.refl


------------------------------------------------------------------------
-- ⇓

⇓-unique :  {a} {A : Set a} 
           {d : Delay A } 
           (d⇓₁ : d )  (d⇓₂ : d ) 
           d⇓₁  d⇓₂
⇓-unique {d = now s} (now s) (now s) = Eq.refl
⇓-unique {d = later d'} (later l) (later r) =
  Eq.cong later (⇓-unique {d = force d'} l r)

module _ {a} {A B : Set a} where

  bind̅₁ : (d : Delay A ) {f : A  Delay B }  bind d f   d 
  bind̅₁ (now s) _ = now s
  bind̅₁ (later s) (later x) =
    later (bind̅₁ (force s) x)

  bind̅₂ : (d : Delay A ) {f : A  Delay B } 
           (bind⇓ : bind d f ) 
           f (extract (bind̅₁ d bind⇓)) 
  bind̅₂ (now s) foo = foo
  bind̅₂ (later s) {f} (later foo) =
    bind̅₂ (force s) foo

  -- The extracted value of a bind is equivalent to the extracted value of its
  -- second element
  extract-bind-⇓ : {d : Delay A Size.∞}  {f : A  Delay B Size.∞} 
                   (d⇓ : d )  (f⇓ : f (extract d⇓) ) 
                   extract (bind-⇓ d⇓ {f} f⇓)  extract f⇓
  extract-bind-⇓ (now a) f⇓ = Eq.refl
  extract-bind-⇓ (later t) f⇓ = extract-bind-⇓ t f⇓

  -- If the right element of a bind returns a certain value so does the entire
  -- bind
  extract-bind̅₂-bind⇓ :
    (d : Delay A ) {f : A  Delay B } 
    (bind⇓ : bind d f ) 
    extract (bind̅₂ d bind⇓)  extract bind⇓
  extract-bind̅₂-bind⇓ (now s) bind⇓ = Eq.refl
  extract-bind̅₂-bind⇓ (later s) (later bind⇓) =
    extract-bind̅₂-bind⇓ (force s) bind⇓

  -- Proof that the length of a bind-⇓ is equal to the sum of the length of its
  -- components.
  bind⇓-length :
      {d : Delay A } {f : A  Delay B } 
      (bind⇓ : bind d f ) 
      (d⇓ : d )  (f⇓ : f (extract d⇓) ) 
      toℕ (length-⇓ bind⇓)  toℕ (length-⇓ d⇓) ℕ.+ toℕ (length-⇓ f⇓)
  bind⇓-length {f = f} bind⇓ d⇓@(now s') f⇓ =
    Eq.cong (toℕ  length-⇓) (⇓-unique bind⇓ f⇓)
  bind⇓-length {d = d@(later dt)} {f = f} bind⇓@(later bind'⇓) d⇓@(later r) f⇓ =
    Eq.cong ℕ.suc (bind⇓-length bind'⇓ r f⇓)