------------------------------------------------------------------------
-- The Agda standard library
--
-- Correctness proofs for container combinators
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

module Data.Container.Combinator.Properties where

open import Axiom.Extensionality.Propositional using (Extensionality)
open import Data.Container.Core
open import Data.Container.Combinator
open import Data.Container.Relation.Unary.Any
open import Data.Empty using (⊥-elim)
open import Data.Product as Prod using (; _,_; proj₁; proj₂; <_,_>; uncurry; curry)
open import Data.Sum.Base as S using (inj₁; inj₂; [_,_]′; [_,_])
open import Function as F using (_∘′_)
open import Function.Inverse as Inv using (_↔_; inverse; module Inverse)
open import Level using (_⊔_; lower)
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_)

-- I have proved some of the correctness statements under the
-- assumption of functional extensionality. I could have reformulated
-- the statements using suitable setoids, but I could not be bothered.

module Identity where

  correct :  {s p x} {X : Set x}   id {s} {p}  X  F.id X
  correct {X = X} = inverse to from  _  P.refl)  _  P.refl)
    where
    to :  id  X  F.id X
    to xs = proj₂ xs _

    from : F.id X   id  X
    from x = (_ , λ _  x)

module Constant (ext :  { ℓ′}  Extensionality  ℓ′) where

  correct :  {x p y} (X : Set x) {Y : Set y}   const {x} {p  y} X  Y  F.const X Y
  correct {x} {y} X {Y} = inverse proj₁ from from∘to λ _  P.refl

    where
    from : X   const X  Y
    from = < F.id , F.const (⊥-elim ∘′ lower) >

    from∘to : (x :  const X  Y)  from (proj₁ x)  x
    from∘to xs = P.cong (proj₁ xs ,_) (ext  x  ⊥-elim (lower x)))

module Composition {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where

  correct :  {x} {X : Set x}   C₁  C₂  X  ( C₁  F.∘  C₂ ) X
  correct {X = X} = inverse to from  _  P.refl)  _  P.refl)
    where
    to :  C₁  C₂  X   C₁  ( C₂  X)
    to ((s , f) , g) = (s , < f , curry (g ∘′ any) >)

    from :  C₁  ( C₂  X)   C₁  C₂  X
    from (s , f) = ((s , proj₁ F.∘ f) , uncurry (proj₂ F.∘ f) ∘′ ◇.proof)

module Product (ext :  { ℓ′}  Extensionality  ℓ′)
       {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where

  correct :  {x} {X : Set x}    C₁ × C₂  X  ( C₁  X Prod.×  C₂  X)
  correct {X = X} = inverse to from from∘to  _  P.refl)
    where
    to :  C₁ × C₂  X   C₁  X Prod.×  C₂  X
    to ((s₁ , s₂) , f) = ((s₁ , f F.∘ inj₁) , (s₂ , f F.∘ inj₂))

    from :  C₁  X Prod.×  C₂  X   C₁ × C₂  X
    from ((s₁ , f₁) , (s₂ , f₂)) = ((s₁ , s₂) , [ f₁ , f₂ ]′)

    from∘to : from F.∘ to  F.id
    from∘to (s , f) =
      P.cong (s ,_) (ext [  _  P.refl) ,  _  P.refl) ])

module IndexedProduct {i s p} {I : Set i} (Cᵢ : I  Container s p) where

  correct :  {x} {X : Set x}   Π I Cᵢ  X  (∀ i   Cᵢ i  X)
  correct {X = X} = inverse to from  _  P.refl)  _  P.refl)
    where
    to :  Π I Cᵢ  X   i   Cᵢ i  X
    to (s , f) = λ i  (s i , λ p  f (i , p))

    from : (∀ i   Cᵢ i  X)   Π I Cᵢ  X
    from f = (proj₁ F.∘ f , uncurry (proj₂ F.∘ f))

module Sum {s₁ s₂ p} (C₁ : Container s₁ p) (C₂ : Container s₂ p) where

  correct :  {x} {X : Set x}   C₁  C₂  X  ( C₁  X S.⊎  C₂  X)
  correct {X = X} = inverse to from from∘to to∘from
    where
    to :  C₁  C₂  X   C₁  X S.⊎  C₂  X
    to (inj₁ s₁ , f) = inj₁ (s₁ , f)
    to (inj₂ s₂ , f) = inj₂ (s₂ , f)

    from :  C₁  X S.⊎  C₂  X   C₁  C₂  X
    from = [ Prod.map inj₁ F.id , Prod.map inj₂ F.id ]′

    from∘to : from F.∘ to  F.id
    from∘to (inj₁ s₁ , f) = P.refl
    from∘to (inj₂ s₂ , f) = P.refl

    to∘from : to F.∘ from  F.id
    to∘from = [  _  P.refl) ,  _  P.refl) ]

module IndexedSum {i s p} {I : Set i} (C : I  Container s p) where

  correct :  {x} {X : Set x}   Σ I C  X  ( λ i   C i  X)
  correct {X = X} = inverse to from  _  P.refl)  _  P.refl)
    where
    to :  Σ I C  X   λ i   C i  X
    to ((i , s) , f) = (i , (s , f))

    from : ( λ i   C i  X)   Σ I C  X
    from (i , (s , f)) = ((i , s) , f)

module ConstantExponentiation {i s p} {I : Set i} (C : Container s p) where

  correct :  {x} {X : Set x}   const[ I ]⟶ C  X  (I   C  X)
  correct = IndexedProduct.correct (F.const C)