------------------------------------------------------------------------
-- The Agda standard library
--
-- Rational numbers
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

module Data.Rational.Base where

open import Function.Base using (id)
open import Data.Integer.Base as  using (; ∣_∣; +_; +0; -[1+_])
import Data.Integer.GCD as 
import Data.Integer.DivMod as 
open import Data.Nat.GCD
open import Data.Nat.Divisibility as ℕDiv using (divides; 0∣⇒≡0)
open import Data.Nat.Coprimality as C
  using (Coprime; Bézout-coprime; coprime-/gcd; coprime?; ¬0-coprimeTo-2+)
open import Data.Nat.Base as  using (; zero; suc) hiding (module )
import Data.Nat.DivMod as 
open import Data.Rational.Unnormalised.Base as ℚᵘ using (ℚᵘ; mkℚᵘ; _≢0)
open import Data.Product
open import Data.Sum.Base using (inj₂)
open import Level using (0ℓ)
open import Relation.Nullary using (¬_; recompute)
open import Relation.Nullary.Decidable
  using (False; fromWitness; fromWitnessFalse; toWitnessFalse)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Unary using (Pred)
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality
  using (_≡_; _≢_; refl; subst; cong; cong₂; module ≡-Reasoning)

open ≡-Reasoning

-- Note, these are re-exported publicly to maintain backwards
-- compatability. Although we are unable (?) to put a warning on them,
-- using these from `Data.Rational` should be viewed as a deprecated
-- feature.

open import Data.Integer public using (+0; +[1+_])

------------------------------------------------------------------------
-- Rational numbers in reduced form. Note that there is exactly one
-- way to represent every rational number.

record  : Set where
  constructor mkℚ
  field
    numerator     : 
    denominator-1 : 
    .isCoprime    : Coprime  numerator  (suc denominator-1)

  denominatorℕ : 
  denominatorℕ = suc denominator-1

  denominator : 
  denominator = + denominatorℕ

open  public using ()
  renaming
  ( numerator    to ↥_
  ; denominator  to ↧_
  ; denominatorℕ to ↧ₙ_
  )

mkℚ+ :  n d  .{d≢0 : d ≢0}  .(Coprime n d)  
mkℚ+ n (suc d) coprime = mkℚ (+ n) d coprime

------------------------------------------------------------------------
-- Equality of rational numbers (coincides with _≡_)

infix 4 _≃_

_≃_ : Rel  0ℓ
p  q = ( p ℤ.*  q)  ( q ℤ.*  p)

------------------------------------------------------------------------
-- Ordering of rationals

infix 4 _≤_ _<_ _≥_ _>_ _≰_ _≱_ _≮_ _≯_

data _≤_ : Rel  0ℓ where
  *≤* :  {p q}  ( p ℤ.*  q) ℤ.≤ ( q ℤ.*  p)  p  q

data _<_ : Rel  0ℓ where
  *<* :  {p q}  ( p ℤ.*  q) ℤ.< ( q ℤ.*  p)  p < q

_≥_ : Rel  0ℓ
x  y = y  x

_>_ : Rel  0ℓ
x > y = y < x

_≰_ : Rel  0ℓ
x  y = ¬ (x  y)

_≱_ : Rel  0ℓ
x  y = ¬ (x  y)

_≮_ : Rel  0ℓ
x  y = ¬ (x < y)

_≯_ : Rel  0ℓ
x  y = ¬ (x > y)

------------------------------------------------------------------------
-- Negation

-_ :   
- mkℚ -[1+ n ] d prf = mkℚ +[1+ n ] d prf
- mkℚ +0       d prf = mkℚ +0       d prf
- mkℚ +[1+ n ] d prf = mkℚ -[1+ n ] d prf

------------------------------------------------------------------------
-- Constructing rationals

-- A constructor for ℚ that takes two natural numbers, say 6 and 21,
-- and returns them in a normalized form, e.g. say 2 and 7

normalize :  (m n : ) {n≢0 : n ≢0}  
normalize m n {n≢0} = mkℚ+ (m ℕ./ gcd m n) (n ℕ./ gcd m n)
  {n/g≢0} (coprime-/gcd m n {g≢0})
  where
  g≢0   = fromWitnessFalse (gcd[m,n]≢0 m n (inj₂ (toWitnessFalse n≢0)))
  n/g≢0 = fromWitnessFalse (n/gcd[m,n]≢0 m n {n≢0} {g≢0})

-- A constructor for ℚ that (unlike mkℚ) automatically normalises it's
-- arguments. See the constants section below for how to use this operator.

infixl 7 _/_

_/_ : (n : ) (d : )  {d≢0 : d ≢0}  
(+ n      / d) {d≢0} =   normalize n       d {d≢0}
(-[1+ n ] / d) {d≢0} = - normalize (suc n) d {d≢0}

------------------------------------------------------------------------
-- Conversion to and from unnormalized rationals

toℚᵘ :   ℚᵘ
toℚᵘ (mkℚ n d-1 _) = mkℚᵘ n d-1

fromℚᵘ : ℚᵘ  
fromℚᵘ (mkℚᵘ n d-1) = n / suc d-1

------------------------------------------------------------------------------
-- Some constants

0ℚ : 
0ℚ = + 0 / 1

1ℚ : 
1ℚ = + 1 / 1

½ : 
½ = + 1 / 2

 : 
 = - ½

------------------------------------------------------------------------
-- Simple predicates

NonZero : Pred  0ℓ
NonZero p = ℚᵘ.NonZero (toℚᵘ p)

Positive : Pred  0ℓ
Positive p = ℚᵘ.Positive (toℚᵘ p)

Negative : Pred  0ℓ
Negative p = ℚᵘ.Negative (toℚᵘ p)

NonPositive : Pred  0ℓ
NonPositive p = ℚᵘ.NonPositive (toℚᵘ p)

NonNegative : Pred  0ℓ
NonNegative p = ℚᵘ.NonNegative (toℚᵘ p)

-- Constructors

≢-nonZero :  {p}  p  0ℚ  NonZero p
≢-nonZero {mkℚ -[1+ _ ] _       _} _   = _
≢-nonZero {mkℚ +[1+ _ ] _       _} _   = _
≢-nonZero {mkℚ +0       zero    _} p≢0 = p≢0 refl
≢-nonZero {mkℚ +0       (suc d) c} p≢0 = ¬0-coprimeTo-2+ (C.recompute c)

>-nonZero :  {p}  p > 0ℚ  NonZero p
>-nonZero {p} (*<* p<q) = ℚᵘ.>-nonZero {toℚᵘ p} (ℚᵘ.*<* p<q)

<-nonZero :  {p}  p < 0ℚ  NonZero p
<-nonZero {p} (*<* p<q) = ℚᵘ.<-nonZero {toℚᵘ p} (ℚᵘ.*<* p<q)

positive :  {p}  p > 0ℚ  Positive p
positive {p} (*<* p<q) = ℚᵘ.positive {toℚᵘ p} (ℚᵘ.*<* p<q)

negative :  {p}  p < 0ℚ  Negative p
negative {p} (*<* p<q) = ℚᵘ.negative {toℚᵘ p} (ℚᵘ.*<* p<q)

nonPositive :  {p}  p  0ℚ  NonPositive p
nonPositive {p} (*≤* p≤q) = ℚᵘ.nonPositive {toℚᵘ p} (ℚᵘ.*≤* p≤q)

nonNegative :  {p}  p  0ℚ  NonNegative p
nonNegative {p} (*≤* p≤q) = ℚᵘ.nonNegative {toℚᵘ p} (ℚᵘ.*≤* p≤q)

------------------------------------------------------------------------------
-- Operations on rationals

infix  8 -_ 1/_
infixl 7 _*_ _÷_
infixl 6 _-_ _+_

-- addition

_+_ :     
p + q = ( p ℤ.*  q ℤ.+  q ℤ.*  p) / (↧ₙ p ℕ.* ↧ₙ q)

-- multiplication

_*_ :     
p * q = ( p ℤ.*  q) / (↧ₙ p ℕ.* ↧ₙ q)

-- subtraction

_-_ :     
p - q = p + (- q)

-- reciprocal: requires a proof that the numerator is not zero

1/_ : (p : )  .{n≢0 :   p  ≢0}  
1/ mkℚ +[1+ n ] d prf = mkℚ +[1+ d ] n (C.sym prf)
1/ mkℚ -[1+ n ] d prf = mkℚ -[1+ d ] n (C.sym prf)

-- division: requires a proof that the denominator is not zero

_÷_ : (p q : )  .{n≢0 :   q  ≢0}  
(p ÷ q) {n≢0} = p * (1/ q) {n≢0}