------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of unnormalized Rational numbers
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

module Data.Rational.Unnormalised.Properties where

open import Algebra
import Algebra.Consequences.Setoid as FC
open import Algebra.Consequences.Propositional
open import Data.Nat.Base as  using (suc; pred)
import Data.Nat.Properties as 
open import Data.Nat.Solver renaming (module +-*-Solver to ℕ-solver)
open import Data.Integer.Base as  using (; +0; +[1+_]; -[1+_]; 0ℤ; 1ℤ; -1ℤ)
open import Data.Integer.Solver renaming (module +-*-Solver to ℤ-solver)
import Data.Integer.Properties as 
import Data.Integer.Properties
open import Data.Rational.Unnormalised.Base
open import Data.Product using (_,_)
open import Data.Sum.Base using ([_,_]′; inj₁; inj₂)
open import Function.Base using (_on_; _$_; _∘_)
open import Level using (0ℓ)
open import Relation.Nullary using (yes; no)
import Relation.Nullary.Decidable as Dec
open import Relation.Binary
open import Relation.Binary.PropositionalEquality

open import Algebra.Properties.CommutativeSemigroup ℤ.*-commutativeSemigroup

------------------------------------------------------------------------
-- Properties of ↥_ and ↧_
------------------------------------------------------------------------

↥↧≡⇒≡ :  {p q}   p   q  ↧ₙ p  ↧ₙ q  p  q
↥↧≡⇒≡ refl refl = refl

------------------------------------------------------------------------
-- Properties of Positive/Negative/NonPositive/NonNegative predicates
------------------------------------------------------------------------

positive⇒nonNegative :  {q}  Positive q  NonNegative q
positive⇒nonNegative {mkℚᵘ +0       _} _ = _
positive⇒nonNegative {mkℚᵘ +[1+ n ] _} _ = _

negative⇒nonPositive :  {q}  Negative q  NonPositive q
negative⇒nonPositive {mkℚᵘ +0       _} _ = _
negative⇒nonPositive {mkℚᵘ -[1+ n ] _} _ = _

------------------------------------------------------------------------
-- Properties of _≃_
------------------------------------------------------------------------

drop-*≡* :  {p q}  p  q   p ℤ.*  q   q ℤ.*  p
drop-*≡* (*≡* eq) = eq

≃-refl : Reflexive _≃_
≃-refl = *≡* refl

≃-reflexive : _≡_  _≃_
≃-reflexive refl = *≡* refl

≃-sym : Symmetric _≃_
≃-sym (*≡* eq) = *≡* (sym eq)

≃-trans : Transitive _≃_
≃-trans {x} {y} {z} (*≡* ad≡cb) (*≡* cf≡ed) =
  *≡* (ℤ.*-cancelʳ-≡ ( x ℤ.*  z) ( z ℤ.*  x) ( y) (λ()) (begin
      x ℤ.*  z ℤ.*  y ≡⟨ xy∙z≈xz∙y ( x) _ _ 
      x ℤ.*  y ℤ.*  z ≡⟨ cong (ℤ._*  z) ad≡cb 
      y ℤ.*  x ℤ.*  z ≡⟨ xy∙z≈xz∙y ( y) _ _ 
      y ℤ.*  z ℤ.*  x ≡⟨ cong (ℤ._*  x) cf≡ed 
      z ℤ.*  y ℤ.*  x ≡⟨ xy∙z≈xz∙y ( z) _ _ 
      z ℤ.*  x ℤ.*  y ))
  where open ≡-Reasoning

_≃?_ : Decidable _≃_
p ≃? q = Dec.map′ *≡* drop-*≡* ( p ℤ.*  q ℤ.≟  q ℤ.*  p)

≃-isEquivalence : IsEquivalence _≃_
≃-isEquivalence = record
  { refl  = ≃-refl
  ; sym   = ≃-sym
  ; trans = ≃-trans
  }

≃-isDecEquivalence : IsDecEquivalence _≃_
≃-isDecEquivalence = record
  { isEquivalence = ≃-isEquivalence
  ; _≟_           = _≃?_
  }

≃-setoid : Setoid 0ℓ 0ℓ
≃-setoid = record
  { isEquivalence = ≃-isEquivalence
  }

≃-decSetoid : DecSetoid 0ℓ 0ℓ
≃-decSetoid = record
  { isDecEquivalence = ≃-isDecEquivalence
  }

------------------------------------------------------------------------
-- Properties of -_
------------------------------------------------------------------------

neg-involutive-≡ : Involutive _≡_ (-_)
neg-involutive-≡ (mkℚᵘ n d) = cong  n  mkℚᵘ n d) (ℤ.neg-involutive n)

neg-involutive : Involutive _≃_ (-_)
neg-involutive p rewrite neg-involutive-≡ p = ≃-refl

-‿cong : Congruent₁ _≃_ (-_)
-‿cong {p} {q} (*≡* p≡q) = *≡* $ begin
  (- p) ℤ.*  q            ≡˘⟨ ℤ.*-identityˡ (ℤ.-( p) ℤ.*  q) 
  1ℤ ℤ.* ((- p) ℤ.*  q)   ≡˘⟨ ℤ.*-assoc 1ℤ ((- p)) ( q) 
  (1ℤ ℤ.* ℤ.-( p)) ℤ.*  q ≡˘⟨ cong (ℤ._*  q) (ℤ.neg-distribʳ-* 1ℤ ( p)) 
  ℤ.-(1ℤ ℤ.*  p) ℤ.*  q   ≡⟨ cong (ℤ._*  q) (ℤ.neg-distribˡ-* 1ℤ ( p)) 
  (-1ℤ ℤ.*  p) ℤ.*  q     ≡⟨ ℤ.*-assoc (ℤ.- 1ℤ) ( p) ( q) 
  -1ℤ ℤ.* ( p ℤ.*  q)     ≡⟨ cong  r  ℤ.- 1ℤ ℤ.* r) p≡q 
  -1ℤ ℤ.* ( q ℤ.*  p)     ≡˘⟨ ℤ.*-assoc (ℤ.- 1ℤ) ( q) ( p) 
  (-1ℤ ℤ.*  q) ℤ.*  p     ≡˘⟨ cong (ℤ._*  p) (ℤ.neg-distribˡ-* 1ℤ ( q)) 
  ℤ.-(1ℤ ℤ.*  q) ℤ.*  p   ≡⟨ cong (ℤ._*  p) (ℤ.neg-distribʳ-* 1ℤ ( q)) 
  (1ℤ ℤ.* (- q)) ℤ.*  p   ≡⟨ ℤ.*-assoc 1ℤ (ℤ.-( q)) ( p) 
  1ℤ ℤ.* ((- q) ℤ.*  p)   ≡⟨ ℤ.*-identityˡ ((- q) ℤ.*  p) 
  (- q) ℤ.*  p             where open ≡-Reasoning

neg-mono-<-> : -_ Preserves  _<_  _>_
neg-mono-<-> {p} {q} (*<* p<q) = *<* $ begin-strict
  ℤ.-   q ℤ.*  p    ≡˘⟨ ℤ.neg-distribˡ-* ( q) ( p) 
  ℤ.- ( q ℤ.*  p)   <⟨ ℤ.neg-mono-< p<q 
  ℤ.- ( p ℤ.*  q)   ≡⟨ ℤ.neg-distribˡ-* ( p) ( q) 
   (- p) ℤ.*  (- q)  where open ℤ.≤-Reasoning

------------------------------------------------------------------------
-- Properties of _≤_
------------------------------------------------------------------------
-- Relational properties

drop-*≤* :  {p q}  p  q  ( p ℤ.*  q) ℤ.≤ ( q ℤ.*  p)
drop-*≤* (*≤* pq≤qp) = pq≤qp

≤-reflexive : _≃_  _≤_
≤-reflexive (*≡* eq) = *≤* (ℤ.≤-reflexive eq)

≤-refl : Reflexive _≤_
≤-refl = ≤-reflexive ≃-refl

≤-trans : Transitive _≤_
≤-trans {i = p@(mkℚᵘ n₁ d₁-1)} {j = q@(mkℚᵘ n₂ d₂-1)} {k = r@(mkℚᵘ n₃ d₃-1)} (*≤* eq₁) (*≤* eq₂)
  = let d₁ =  p; d₂ =  q; d₃ =  r in *≤* $
  ℤ.*-cancelʳ-≤-pos (n₁ ℤ.* d₃) (n₃ ℤ.* d₁) d₂-1 $ begin
  (n₁  ℤ.* d₃) ℤ.* d₂  ≡⟨ ℤ.*-assoc n₁ d₃ d₂ 
  n₁   ℤ.* (d₃ ℤ.* d₂) ≡⟨ cong (n₁ ℤ.*_) (ℤ.*-comm d₃ d₂) 
  n₁   ℤ.* (d₂ ℤ.* d₃) ≡⟨ sym (ℤ.*-assoc n₁ d₂ d₃) 
  (n₁  ℤ.* d₂) ℤ.* d₃  ≤⟨ ℤ.*-monoʳ-≤-pos d₃-1 eq₁ 
  (n₂  ℤ.* d₁) ℤ.* d₃  ≡⟨ cong (ℤ._* d₃) (ℤ.*-comm n₂ d₁) 
  (d₁ ℤ.* n₂)  ℤ.* d₃  ≡⟨ ℤ.*-assoc d₁ n₂ d₃ 
  d₁  ℤ.* (n₂  ℤ.* d₃) ≤⟨ ℤ.*-monoˡ-≤-pos d₁-1 eq₂ 
  d₁  ℤ.* (n₃  ℤ.* d₂) ≡⟨ sym (ℤ.*-assoc d₁ n₃ d₂) 
  (d₁ ℤ.* n₃)  ℤ.* d₂  ≡⟨ cong (ℤ._* d₂) (ℤ.*-comm d₁ n₃) 
  (n₃  ℤ.* d₁) ℤ.* d₂   where open ℤ.≤-Reasoning

≤-antisym : Antisymmetric _≃_ _≤_
≤-antisym (*≤* le₁) (*≤* le₂) = *≡* (ℤ.≤-antisym le₁ le₂)

≤-total : Total _≤_
≤-total p q = [ inj₁  *≤* , inj₂  *≤* ]′ (ℤ.≤-total
  ( p ℤ.*  q)
  ( q ℤ.*  p))

infix 4 _≤?_
_≤?_ : Decidable _≤_
p ≤? q = Dec.map′ *≤* drop-*≤* ( p ℤ.*  q ℤ.≤?  q ℤ.*  p)

≤-irrelevant : Irrelevant _≤_
≤-irrelevant (*≤* p≤q₁) (*≤* p≤q₂) = cong *≤* (ℤ.≤-irrelevant p≤q₁ p≤q₂)

------------------------------------------------------------------------
-- Structures

≤-isPreorder : IsPreorder _≃_ _≤_
≤-isPreorder = record
  { isEquivalence = ≃-isEquivalence
  ; reflexive     = ≤-reflexive
  ; trans         = ≤-trans
  }

≤-isPartialOrder : IsPartialOrder _≃_ _≤_
≤-isPartialOrder = record
  { isPreorder = ≤-isPreorder
  ; antisym    = ≤-antisym
  }

≤-isTotalOrder : IsTotalOrder _≃_ _≤_
≤-isTotalOrder = record
  { isPartialOrder = ≤-isPartialOrder
  ; total          = ≤-total
  }

≤-isDecTotalOrder : IsDecTotalOrder _≃_ _≤_
≤-isDecTotalOrder = record
  { isTotalOrder = ≤-isTotalOrder
  ; _≟_          = _≃?_
  ; _≤?_         = _≤?_
  }

------------------------------------------------------------------------
-- Bundles

≤-preorder : Preorder 0ℓ 0ℓ 0ℓ
≤-preorder = record
  { isPreorder = ≤-isPreorder
  }

≤-poset : Poset 0ℓ 0ℓ 0ℓ
≤-poset = record
  { isPartialOrder = ≤-isPartialOrder
  }

≤-totalOrder : TotalOrder 0ℓ 0ℓ 0ℓ
≤-totalOrder = record
  { isTotalOrder = ≤-isTotalOrder
  }

≤-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ
≤-decTotalOrder = record
  { isDecTotalOrder = ≤-isDecTotalOrder
  }

------------------------------------------------------------------------
-- Properties of _<_
------------------------------------------------------------------------

drop-*<* :  {p q}  p < q  ( p ℤ.*  q) ℤ.< ( q ℤ.*  p)
drop-*<* (*<* pq<qp) = pq<qp

------------------------------------------------------------------------
-- Relationship between other operators

<⇒≤ : _<_  _≤_
<⇒≤ (*<* p<q) = *≤* (ℤ.<⇒≤ p<q)

<⇒≢ : _<_  _≢_
<⇒≢ (*<* x<y) refl = ℤ.<⇒≢ x<y refl

<⇒≱ : _<_  _≱_
<⇒≱ (*<* x<y) = ℤ.<⇒≱ x<y  drop-*≤*

≰⇒> : _≰_  _>_
≰⇒> p≰q = *<* (ℤ.≰⇒> (p≰q  *≤*))

≮⇒≥ : _≮_  _≥_
≮⇒≥ p≮q = *≤* (ℤ.≮⇒≥ (p≮q  *<*))

------------------------------------------------------------------------
-- Relational properties

<-irrefl-≡ : Irreflexive _≡_ _<_
<-irrefl-≡ refl (*<* x<x) = ℤ.<-irrefl refl x<x

<-irrefl : Irreflexive _≃_ _<_
<-irrefl (*≡* x≡y) (*<* x<y) = ℤ.<-irrefl x≡y x<y

<-asym : Asymmetric _<_
<-asym (*<* x<y) = ℤ.<-asym x<y  drop-*<*

≤-<-trans : Trans _≤_ _<_ _<_
≤-<-trans {p} {q} {r} (*≤* p≤q) (*<* q<r) = *<* $
  ℤ.*-cancelʳ-<-nonNeg _ $ begin-strict
  n₁ ℤ.*  d₃ ℤ.* d₂  ≡⟨ ℤ.*-assoc n₁ d₃ d₂ 
  n₁ ℤ.* (d₃ ℤ.* d₂) ≡⟨ cong (n₁ ℤ.*_) (ℤ.*-comm d₃ d₂) 
  n₁ ℤ.* (d₂ ℤ.* d₃) ≡˘⟨ ℤ.*-assoc n₁ d₂ d₃ 
  n₁ ℤ.*  d₂ ℤ.* d₃  ≤⟨ ℤ.*-monoʳ-≤-pos (pred (↧ₙ r)) p≤q 
  n₂ ℤ.*  d₁ ℤ.* d₃  ≡⟨ cong (ℤ._* d₃) (ℤ.*-comm n₂ d₁) 
  d₁ ℤ.*  n₂ ℤ.* d₃  ≡⟨ ℤ.*-assoc d₁ n₂ d₃ 
  d₁ ℤ.* (n₂ ℤ.* d₃) <⟨ ℤ.*-monoˡ-<-pos (pred (↧ₙ p)) q<r 
  d₁ ℤ.* (n₃ ℤ.* d₂) ≡˘⟨ ℤ.*-assoc d₁ n₃ d₂ 
  d₁ ℤ.*  n₃ ℤ.* d₂  ≡⟨ cong (ℤ._* d₂) (ℤ.*-comm d₁ n₃) 
  n₃ ℤ.*  d₁ ℤ.* d₂  
  where open ℤ.≤-Reasoning
        n₁ =  p; n₂ =  q; n₃ =  r; d₁ =  p; d₂ =  q; d₃ =  r

<-≤-trans : Trans _<_ _≤_ _<_
<-≤-trans {p} {q} {r} (*<* p<q) (*≤* q≤r) = *<* $
  ℤ.*-cancelʳ-<-nonNeg _ $ begin-strict
  n₁ ℤ.*  d₃ ℤ.* d₂  ≡⟨ ℤ.*-assoc n₁ d₃ d₂ 
  n₁ ℤ.* (d₃ ℤ.* d₂) ≡⟨ cong (n₁ ℤ.*_) (ℤ.*-comm d₃ d₂) 
  n₁ ℤ.* (d₂ ℤ.* d₃) ≡˘⟨ ℤ.*-assoc n₁ d₂ d₃ 
  n₁ ℤ.*  d₂ ℤ.* d₃  <⟨ ℤ.*-monoʳ-<-pos (pred (↧ₙ r)) p<q 
  n₂ ℤ.*  d₁ ℤ.* d₃  ≡⟨ cong (ℤ._* d₃) (ℤ.*-comm n₂ d₁) 
  d₁ ℤ.*  n₂ ℤ.* d₃  ≡⟨ ℤ.*-assoc d₁ n₂ d₃ 
  d₁ ℤ.* (n₂ ℤ.* d₃) ≤⟨ ℤ.*-monoˡ-≤-pos (pred (↧ₙ p)) q≤r 
  d₁ ℤ.* (n₃ ℤ.* d₂) ≡˘⟨ ℤ.*-assoc d₁ n₃ d₂ 
  d₁ ℤ.*  n₃ ℤ.* d₂  ≡⟨ cong (ℤ._* d₂) (ℤ.*-comm d₁ n₃) 
  n₃ ℤ.*  d₁ ℤ.* d₂  
  where open ℤ.≤-Reasoning
        n₁ =  p; n₂ =  q; n₃ =  r; d₁ =  p; d₂ =  q; d₃ =  r

<-trans : Transitive _<_
<-trans = ≤-<-trans  <⇒≤

<-cmp : Trichotomous _≃_ _<_
<-cmp p q with ℤ.<-cmp ( p ℤ.*  q) ( q ℤ.*  p)
... | tri< x<y x≉y x≯y = tri< (*<* x<y) (x≉y  drop-*≡*) (x≯y  drop-*<*)
... | tri≈ x≮y x≈y x≯y = tri≈ (x≮y  drop-*<*) (*≡* x≈y) (x≯y  drop-*<*)
... | tri> x≮y x≉y x>y = tri> (x≮y  drop-*<*) (x≉y  drop-*≡*) (*<* x>y)

infix 4 _<?_
_<?_ : Decidable _<_
p <? q = Dec.map′ *<* drop-*<* ( p ℤ.*  q ℤ.<?  q ℤ.*  p)

<-irrelevant : Irrelevant _<_
<-irrelevant (*<* p<q₁) (*<* p<q₂) = cong *<* (ℤ.<-irrelevant p<q₁ p<q₂)

<-respʳ-≃ : _<_ Respectsʳ _≃_
<-respʳ-≃ {p} {q} {r} (*≡* q≡r) (*<* p<q) = *<* $
  ℤ.*-cancelʳ-<-nonNeg _ $ begin-strict
  n₁ ℤ.*  d₃ ℤ.* d₂  ≡⟨ ℤ.*-assoc n₁ d₃ d₂ 
  n₁ ℤ.* (d₃ ℤ.* d₂) ≡⟨ cong (n₁ ℤ.*_) (ℤ.*-comm d₃ d₂) 
  n₁ ℤ.* (d₂ ℤ.* d₃) ≡˘⟨ ℤ.*-assoc n₁ d₂ d₃ 
  n₁ ℤ.*  d₂ ℤ.* d₃  <⟨ ℤ.*-monoʳ-<-pos (pred (↧ₙ r)) p<q 
  n₂ ℤ.*  d₁ ℤ.* d₃  ≡⟨ ℤ.*-assoc n₂ d₁ d₃ 
  n₂ ℤ.* (d₁ ℤ.* d₃) ≡⟨ cong (n₂ ℤ.*_) (ℤ.*-comm d₁ d₃) 
  n₂ ℤ.* (d₃ ℤ.* d₁) ≡˘⟨ ℤ.*-assoc n₂ d₃ d₁ 
  n₂ ℤ.*  d₃ ℤ.* d₁  ≡⟨ cong (ℤ._* d₁) q≡r 
  n₃ ℤ.*  d₂ ℤ.* d₁  ≡⟨ ℤ.*-assoc n₃ d₂ d₁ 
  n₃ ℤ.* (d₂ ℤ.* d₁) ≡⟨ cong (n₃ ℤ.*_) (ℤ.*-comm d₂ d₁) 
  n₃ ℤ.* (d₁ ℤ.* d₂) ≡˘⟨ ℤ.*-assoc n₃ d₁ d₂ 
  n₃ ℤ.*  d₁ ℤ.* d₂  
  where open ℤ.≤-Reasoning
        n₁ =  p; n₂ =  q; n₃ =  r; d₁ =  p; d₂ =  q; d₃ =  r

<-respˡ-≃ : _<_ Respectsˡ _≃_
<-respˡ-≃ q≃r q<p
  = subst (_< _) (neg-involutive-≡ _)
  $ subst (_ <_) (neg-involutive-≡ _)
  $ neg-mono-<-> (<-respʳ-≃ (-‿cong q≃r) (neg-mono-<-> q<p))

<-resp-≃ : _<_ Respects₂ _≃_
<-resp-≃ = <-respʳ-≃ , <-respˡ-≃

------------------------------------------------------------------------
-- Structures

<-isStrictPartialOrder-≡ : IsStrictPartialOrder _≡_ _<_
<-isStrictPartialOrder-≡ = record
  { isEquivalence = isEquivalence
  ; irrefl        = <-irrefl-≡
  ; trans         = <-trans
  ; <-resp-≈      = subst (_ <_) , subst (_< _)
  }

<-isStrictPartialOrder : IsStrictPartialOrder _≃_ _<_
<-isStrictPartialOrder = record
  { isEquivalence = ≃-isEquivalence
  ; irrefl        = <-irrefl
  ; trans         = <-trans
  ; <-resp-≈      = <-resp-≃
  }

<-isStrictTotalOrder : IsStrictTotalOrder _≃_ _<_
<-isStrictTotalOrder = record
  { isEquivalence = ≃-isEquivalence
  ; trans         = <-trans
  ; compare       = <-cmp
  }

------------------------------------------------------------------------
-- Bundles

<-strictPartialOrder-≡ : StrictPartialOrder 0ℓ 0ℓ 0ℓ
<-strictPartialOrder-≡ = record
  { isStrictPartialOrder = <-isStrictPartialOrder-≡
  }

<-strictPartialOrder : StrictPartialOrder 0ℓ 0ℓ 0ℓ
<-strictPartialOrder = record
  { isStrictPartialOrder = <-isStrictPartialOrder
  }

<-strictTotalOrder : StrictTotalOrder 0ℓ 0ℓ 0ℓ
<-strictTotalOrder = record
  { isStrictTotalOrder = <-isStrictTotalOrder
  }

------------------------------------------------------------------------
-- A specialised module for reasoning about the _≤_ and _<_ relations
------------------------------------------------------------------------

module ≤-Reasoning where
  open import Relation.Binary.Reasoning.Base.Triple
    ≤-isPreorder
    <-trans
    <-resp-≃
    <⇒≤
    <-≤-trans
    ≤-<-trans
    public

------------------------------------------------------------------------
-- Properties of ↥_/↧_

≥0⇒↥≥0 :  {n dm}  mkℚᵘ n dm  0ℚᵘ  n ℤ.≥ 0ℤ
≥0⇒↥≥0 {n} {dm} r≥0 = ℤ.≤-trans (drop-*≤* r≥0)
                                (ℤ.≤-reflexive $ ℤ.*-identityʳ n)

>0⇒↥>0 :  {n dm}  mkℚᵘ n dm > 0ℚᵘ  n ℤ.> 0ℤ
>0⇒↥>0 {n} {dm} r>0 = ℤ.<-≤-trans (drop-*<* r>0)
                                  (ℤ.≤-reflexive $ ℤ.*-identityʳ n)

------------------------------------------------------------------------
-- Properties of Positive/NonPositive/Negative/NonNegative and _≤_/_<_

positive⁻¹ :  {q}  Positive q  q > 0ℚᵘ
positive⁻¹ {mkℚᵘ +[1+ n ] _} _ = *<* (ℤ.+<+ (ℕ.s≤s ℕ.z≤n))

nonNegative⁻¹ :  {q}  NonNegative q  q  0ℚᵘ
nonNegative⁻¹ {mkℚᵘ +0       _} _ = *≤* (ℤ.+≤+ ℕ.z≤n)
nonNegative⁻¹ {mkℚᵘ +[1+ n ] _} _ = *≤* (ℤ.+≤+ ℕ.z≤n)

negative⁻¹ :  {q}  Negative q  q < 0ℚᵘ
negative⁻¹ {mkℚᵘ -[1+ n ] _} _ = *<* ℤ.-<+

nonPositive⁻¹ :  {q}  NonPositive q  q  0ℚᵘ
nonPositive⁻¹ {mkℚᵘ +0       _} _ = *≤* (ℤ.+≤+ ℕ.z≤n)
nonPositive⁻¹ {mkℚᵘ -[1+ n ] _} _ = *≤* ℤ.-≤+

negative<positive :  {p q}  Negative p  Positive q  p < q
negative<positive p<0 q>0 = <-trans (negative⁻¹ p<0) (positive⁻¹ q>0)

------------------------------------------------------------------------
-- Properties of _+_
------------------------------------------------------------------------

------------------------------------------------------------------------
-- Raw bundles

+-rawMagma : RawMagma 0ℓ 0ℓ
+-rawMagma = record
  { _≈_ = _≃_
  ; _∙_ = _+_
  }

+-rawMonoid : RawMonoid 0ℓ 0ℓ
+-rawMonoid = record
  { _≈_ = _≃_
  ; _∙_ = _+_
  ; ε   = 0ℚᵘ
  }

+-0-rawGroup : RawGroup 0ℓ 0ℓ
+-0-rawGroup = record
  { Carrier = ℚᵘ
  ; _≈_ = _≃_
  ; _∙_ = _+_
  ; ε = 0ℚᵘ
  ; _⁻¹ = -_
  }

+-*-rawRing : RawRing 0ℓ 0ℓ
+-*-rawRing = record
  { Carrier = ℚᵘ
  ; _≈_ = _≃_
  ; _+_ = _+_
  ; _*_ = _*_
  ; -_ = -_
  ; 0# = 0ℚᵘ
  ; 1# = 1ℚᵘ
  }

------------------------------------------------------------------------
-- Algebraic properties

-- Congruence

+-cong : Congruent₂ _≃_ _+_
+-cong {x} {y} {u} {v} (*≡* ab′∼a′b) (*≡* cd′∼c′d) = *≡* (begin
  (↥x ℤ.* ↧u ℤ.+ ↥u ℤ.* ↧x) ℤ.* (↧y ℤ.* ↧v)               ≡⟨ solve 6  ↥x ↧x ↧y ↥u ↧u ↧v 
                                                             (↥x :* ↧u :+ ↥u :* ↧x) :* (↧y :* ↧v) :=
                                                             (↥x :* ↧y :* (↧u :* ↧v)) :+ ↥u :* ↧v :* (↧x :* ↧y))
                                                             refl ( x) ( x) ( y) ( u) ( u) ( v) 
  ↥x ℤ.* ↧y ℤ.* (↧u ℤ.* ↧v) ℤ.+ ↥u ℤ.* ↧v ℤ.* (↧x ℤ.* ↧y) ≡⟨ cong₂ ℤ._+_ (cong (ℤ._* (↧u ℤ.* ↧v)) ab′∼a′b)
                                                                         (cong (ℤ._* (↧x ℤ.* ↧y)) cd′∼c′d) 
  ↥y ℤ.* ↧x ℤ.* (↧u ℤ.* ↧v) ℤ.+ ↥v ℤ.* ↧u ℤ.* (↧x ℤ.* ↧y) ≡⟨ solve 6  ↧x ↥y ↧y ↧u ↥v ↧v 
                                                             (↥y :* ↧x :* (↧u :* ↧v)) :+ ↥v :* ↧u :* (↧x :* ↧y) :=
                                                             (↥y :* ↧v :+ ↥v :* ↧y) :* (↧x :* ↧u))
                                                             refl ( x) ( y) ( y) ( u) ( v) ( v) 
  (↥y ℤ.* ↧v ℤ.+ ↥v ℤ.* ↧y) ℤ.* (↧x ℤ.* ↧u)               )
  where
  ↥x =  x; ↧x =  x; ↥y =  y; ↧y =  y; ↥u =  u; ↧u =  u; ↥v =  v; ↧v =  v
  open ≡-Reasoning
  open ℤ-solver

+-congʳ :  p {q r}  q  r  p + q  p + r
+-congʳ p q≃r = +-cong (≃-refl {p}) q≃r

+-congˡ :  p {q r}  q  r  q + p  r + p
+-congˡ p q≃r = +-cong q≃r (≃-refl {p})

-- Associativity

+-assoc-↥ : Associative (_≡_ on ↥_) _+_
+-assoc-↥ p q r = solve 6  ↥p ↧p ↥q ↧q ↥r ↧r 
    (↥p :* ↧q :+ ↥q :* ↧p) :* ↧r :+ ↥r :* (↧p :* ↧q) :=
    ↥p :* (↧q :* ↧r) :+ (↥q :* ↧r :+ ↥r :* ↧q) :* ↧p)
  refl ( p) ( p) ( q) ( q) ( r) ( r)
  where open ℤ-solver

+-assoc-↧ : Associative (_≡_ on ↧ₙ_) _+_
+-assoc-↧ p q r = ℕ.*-assoc (↧ₙ p) (↧ₙ q) (↧ₙ r)

+-assoc-≡ : Associative _≡_ _+_
+-assoc-≡ p q r = ↥↧≡⇒≡ (+-assoc-↥ p q r) (+-assoc-↧ p q r)

+-assoc : Associative _≃_ _+_
+-assoc p q r = ≃-reflexive (+-assoc-≡ p q r)

-- Commutativity

+-comm-↥ : Commutative (_≡_ on ↥_) _+_
+-comm-↥ p q = ℤ.+-comm ( p ℤ.*  q) ( q ℤ.*  p)

+-comm-↧ : Commutative (_≡_ on ↧ₙ_) _+_
+-comm-↧ p q = ℕ.*-comm (↧ₙ p) (↧ₙ q)

+-comm-≡ : Commutative _≡_ _+_
+-comm-≡ p q = ↥↧≡⇒≡ (+-comm-↥ p q) (+-comm-↧ p q)

+-comm : Commutative _≃_ _+_
+-comm p q = ≃-reflexive (+-comm-≡ p q)

-- Identities

+-identityˡ-↥ : LeftIdentity (_≡_ on ↥_) 0ℚᵘ _+_
+-identityˡ-↥ p = begin
  0ℤ ℤ.*  p ℤ.+  p ℤ.* 1ℤ ≡⟨ cong₂ ℤ._+_ (ℤ.*-zeroˡ ( p)) (ℤ.*-identityʳ ( p)) 
  0ℤ ℤ.+  p                ≡⟨ ℤ.+-identityˡ ( p) 
   p                        where open ≡-Reasoning

+-identityˡ-↧ : LeftIdentity (_≡_ on ↧ₙ_) 0ℚᵘ _+_
+-identityˡ-↧ p = ℕ.+-identityʳ (↧ₙ p)

+-identityˡ-≡ : LeftIdentity _≡_ 0ℚᵘ _+_
+-identityˡ-≡ p = ↥↧≡⇒≡ (+-identityˡ-↥ p) (+-identityˡ-↧ p)

+-identityˡ : LeftIdentity _≃_ 0ℚᵘ _+_
+-identityˡ p = ≃-reflexive (+-identityˡ-≡ p)

+-identityʳ-≡ : RightIdentity _≡_ 0ℚᵘ _+_
+-identityʳ-≡ = comm+idˡ⇒idʳ +-comm-≡ {e = 0ℚᵘ} +-identityˡ-≡

+-identityʳ : RightIdentity _≃_ 0ℚᵘ _+_
+-identityʳ p = ≃-reflexive (+-identityʳ-≡ p)

+-identity-≡ : Identity _≡_ 0ℚᵘ _+_
+-identity-≡ = +-identityˡ-≡ , +-identityʳ-≡

+-identity : Identity _≃_ 0ℚᵘ _+_
+-identity = +-identityˡ , +-identityʳ

+-inverseˡ : LeftInverse _≃_ 0ℚᵘ -_ _+_
+-inverseˡ p = *≡* let n =  p; d =  p in
  ((ℤ.- n) ℤ.* d ℤ.+ n ℤ.* d) ℤ.* 1ℤ ≡⟨ ℤ.*-identityʳ ((ℤ.- n) ℤ.* d ℤ.+ n ℤ.* d) 
  (ℤ.- n) ℤ.* d ℤ.+ n ℤ.* d          ≡˘⟨ cong (ℤ._+ (n ℤ.* d)) (ℤ.neg-distribˡ-* n d) 
  ℤ.- (n ℤ.* d) ℤ.+ n ℤ.* d          ≡⟨ ℤ.+-inverseˡ (n ℤ.* d) 
  0ℤ                                  where open ≡-Reasoning

+-inverseʳ : RightInverse _≃_ 0ℚᵘ -_ _+_
+-inverseʳ p = *≡* let n =  p; d =  p in
  (n ℤ.* d ℤ.+ (ℤ.- n) ℤ.* d) ℤ.* 1ℤ ≡⟨ ℤ.*-identityʳ (n ℤ.* d ℤ.+ (ℤ.- n) ℤ.* d) 
  n ℤ.* d ℤ.+ (ℤ.- n) ℤ.* d          ≡˘⟨ cong  n+d  n ℤ.* d ℤ.+ n+d) (ℤ.neg-distribˡ-* n d) 
  n ℤ.* d ℤ.+ ℤ.- (n ℤ.* d)          ≡⟨ ℤ.+-inverseʳ (n ℤ.* d) 
  0ℤ                                  where open ≡-Reasoning

+-inverse : Inverse _≃_ 0ℚᵘ -_ _+_
+-inverse = +-inverseˡ , +-inverseʳ

+-cancelˡ :  {r p q}  r + p  r + q  p  q
+-cancelˡ {r} {p} {q} r+p≃r+q = begin-equality
  p            ≈˘⟨ +-identityʳ p 
  p + 0ℚᵘ      ≈⟨ +-congʳ p (≃-sym (+-inverseʳ r)) 
  p + (r - r)  ≈˘⟨ +-assoc p r (- r) 
  (p + r) - r  ≈⟨ +-congˡ (- r) (+-comm p r) 
  (r + p) - r  ≈⟨ +-congˡ (- r) r+p≃r+q 
  (r + q) - r  ≈⟨ +-congˡ (- r) (+-comm r q) 
  (q + r) - r  ≈⟨ +-assoc q r (- r) 
  q + (r - r)  ≈⟨ +-congʳ q (+-inverseʳ r) 
  q + 0ℚᵘ      ≈⟨ +-identityʳ q 
  q             where open ≤-Reasoning

+-cancelʳ :  {r p q}  p + r  q + r  p  q
+-cancelʳ {r} {p} {q} p+r≃q+r = +-cancelˡ {r} $ begin-equality
  r + p ≈⟨ +-comm r p 
  p + r ≈⟨ p+r≃q+r 
  q + r ≈⟨ +-comm q r 
  r + q  where open ≤-Reasoning

------------------------------------------------------------------------
-- Properties of _+_ and -_

neg-distrib-+ :  p q  - (p + q)  (- p) + (- q)
neg-distrib-+ p q = ↥↧≡⇒≡ (begin
    ℤ.- ( p ℤ.*  q ℤ.+  q ℤ.*  p)       ≡⟨ ℤ.neg-distrib-+ ( p ℤ.*  q) _ 
    ℤ.- ( p ℤ.*  q) ℤ.+ ℤ.- ( q ℤ.*  p) ≡⟨ cong₂ ℤ._+_ (ℤ.neg-distribˡ-* ( p) _)
                                                           (ℤ.neg-distribˡ-* ( q) _) 
    (ℤ.-  p) ℤ.*  q ℤ.+ (ℤ.-  q) ℤ.*  p 
  ) refl
  where open ≡-Reasoning

------------------------------------------------------------------------
-- Properties of _+_ and _≤_

private
  lemma :  r p q  ( r ℤ.*  p ℤ.+  p ℤ.*  r) ℤ.* ( r ℤ.*  q)
                     ( r ℤ.*  r) ℤ.* ( p ℤ.*  q) ℤ.+ ( r ℤ.*  r) ℤ.* ( p ℤ.*  q)
  lemma r p q = solve 5  ↥r ↧r ↧p ↥p ↧q 
                          (↥r :* ↧p :+ ↥p :* ↧r) :* (↧r :* ↧q) :=
                          (↥r :* ↧r) :* (↧p :* ↧q) :+ (↧r :* ↧r) :* (↥p :* ↧q))
                      refl ( r) ( r) ( p) ( p) ( q)
    where open ℤ-solver

+-monoʳ-≤ :  r  (r +_) Preserves _≤_  _≤_
+-monoʳ-≤ r {p} {q} (*≤* x≤y) = *≤* $ begin
   (r + p) ℤ.* ( (r + q))                                ≡⟨ lemma r p q 
  r₂ ℤ.* ( p ℤ.*  q) ℤ.+ ( r ℤ.*  r) ℤ.* ( p ℤ.*  q)
    ≤⟨ ℤ.+-mono-≤ (ℤ.≤-reflexive $ cong (r₂ ℤ.*_) (ℤ.*-comm ( p) ( q)))
                  (ℤ.*-monoˡ-≤-nonNeg (↧ₙ r ℕ.* ↧ₙ r) x≤y) 
  r₂ ℤ.* ( q ℤ.*  p) ℤ.+ ( r ℤ.*  r) ℤ.* ( q ℤ.*  p) ≡⟨ sym $ lemma r q p 
   (r + q) ℤ.* ( (r + p))                                
  where open ℤ.≤-Reasoning; r₂ =  r ℤ.*  r

+-monoˡ-≤ :  r  (_+ r) Preserves _≤_  _≤_
+-monoˡ-≤ r {p} {q} rewrite +-comm-≡ p r | +-comm-≡ q r = +-monoʳ-≤ r

+-mono-≤ : _+_ Preserves₂ _≤_  _≤_  _≤_
+-mono-≤ {p} {q} {u} {v} p≤q u≤v = ≤-trans (+-monoˡ-≤ u p≤q) (+-monoʳ-≤ q u≤v)

≤-steps :  {p q r}  NonNegative r  p  q  p  r + q
≤-steps {p} {q} {r} r≥0 p≤q = subst (_≤ r + q) (+-identityˡ-≡ p) (+-mono-≤ (nonNegative⁻¹ r≥0) p≤q)

p≤p+q :  {p q}  NonNegative q  p  p + q
p≤p+q {p} {q} q≥0 = subst (_≤ p + q) (+-identityʳ-≡ p) (+-monoʳ-≤ p (nonNegative⁻¹ q≥0))

p≤q+p :  {p}  NonNegative p   {q}  q  p + q
p≤q+p {p} p≥0 {q} rewrite +-comm-≡ p q = p≤p+q p≥0

------------------------------------------------------------------------
-- Properties of _+_ and _<_

+-monoʳ-< :  r  (r +_) Preserves _<_  _<_
+-monoʳ-< r@(mkℚᵘ n dm) {p} {q} (*<* x<y) = *<* $ begin-strict
   (r + p) ℤ.* ( (r + q))                                   ≡⟨ lemma r p q 
  r₂ ℤ.* ( p ℤ.*  q) ℤ.+ ( r ℤ.*  r) ℤ.* ( p ℤ.*  q)
    <⟨ ℤ.+-mono-≤-< (ℤ.≤-reflexive $ cong (r₂ ℤ.*_) (ℤ.*-comm ( p) ( q)))
                    (ℤ.*-monoˡ-<-pos (dm ℕ.+ dm ℕ.* suc dm) x<y) 
  r₂ ℤ.* ( q ℤ.*  p) ℤ.+ ( r ℤ.*  r) ℤ.* ( q ℤ.*  p)    ≡⟨ sym $ lemma r q p 
   (r + q) ℤ.* ( (r + p))                                   
  where open ℤ.≤-Reasoning
        r₂ = n ℤ.*  r

+-monoˡ-< :  r  (_+ r) Preserves _<_  _<_
+-monoˡ-< r {p} {q} rewrite +-comm-≡ p r | +-comm-≡ q r = +-monoʳ-< r

+-mono-< : _+_ Preserves₂ _<_  _<_  _<_
+-mono-< {p} {q} {u} {v} p<q u<v = <-trans (+-monoˡ-< u p<q) (+-monoʳ-< q u<v)

+-mono-≤-< : _+_ Preserves₂ _≤_  _<_  _<_
+-mono-≤-< {p} {q} {r} p≤q q<r = ≤-<-trans (+-monoˡ-≤ r p≤q) (+-monoʳ-< q q<r)

+-mono-<-≤ : _+_ Preserves₂ _<_  _≤_  _<_
+-mono-<-≤ {p} {q} {r} p<q q≤r = <-≤-trans (+-monoˡ-< r p<q) (+-monoʳ-≤ q q≤r)

-----------------------------------------------------------------------
-- Properties of _-_

+-minus-telescope :  p q r  (p - q) + (q - r)  p - r
+-minus-telescope p q r = begin-equality
  (p - q) + (q - r)   ≈⟨ ≃-sym (+-assoc (p - q) q (- r)) 
  (p - q) + q - r     ≈⟨ +-congˡ (- r) (+-assoc p (- q) q) 
  (p + (- q + q)) - r ≈⟨ +-congˡ (- r) (+-congʳ p (+-inverseˡ q)) 
  (p + 0ℚᵘ) - r       ≈⟨ +-congˡ (- r) (+-identityʳ p) 
  p - r                where open ≤-Reasoning

p≃q⇒p-q≃0 :  p q  p  q  p - q  0ℚᵘ
p≃q⇒p-q≃0 p q p≃q = begin-equality
  p - q ≈⟨ +-congˡ (- q) p≃q 
  q - q ≈⟨ +-inverseʳ q 
  0ℚᵘ    where open ≤-Reasoning

p-q≃0⇒p≃q :  p q  p - q  0ℚᵘ  p  q
p-q≃0⇒p≃q p q p-q≃0 = begin-equality
  p             ≡˘⟨ +-identityʳ-≡ p 
  p + 0ℚᵘ       ≈⟨ +-congʳ p (≃-sym (+-inverseˡ q)) 
  p + (- q + q) ≡˘⟨ +-assoc-≡ p (- q) q 
  (p - q) + q   ≈⟨ +-congˡ q p-q≃0 
  0ℚᵘ + q       ≡⟨ +-identityˡ-≡ q 
  q              where open ≤-Reasoning

neg-mono-≤-≥ : -_ Preserves _≤_  _≥_
neg-mono-≤-≥ {p} {q} (*≤* p≤q) = *≤* $ begin
  ℤ.-  q ℤ.*  p   ≡˘⟨ ℤ.neg-distribˡ-* ( q) ( p) 
  ℤ.- ( q ℤ.*  p) ≤⟨ ℤ.neg-mono-≤ p≤q 
  ℤ.- ( p ℤ.*  q) ≡⟨ ℤ.neg-distribˡ-* ( p) ( q) 
  ℤ.-  p ℤ.*  q    where open ℤ.≤-Reasoning

p≤q⇒p-q≤0 :  {p q}  p  q  p - q  0ℚᵘ
p≤q⇒p-q≤0 {p} {q} p≤q = begin
  p - q ≤⟨ +-monoˡ-≤ (- q) p≤q 
  q - q ≈⟨ +-inverseʳ q 
  0ℚᵘ    where open ≤-Reasoning

p-q≤0⇒p≤q :  {p q}  p - q  0ℚᵘ  p  q
p-q≤0⇒p≤q {p} {q} p-q≤0 = begin
  p             ≡˘⟨ +-identityʳ-≡ p 
  p + 0ℚᵘ       ≈⟨ +-congʳ p (≃-sym (+-inverseˡ q)) 
  p + (- q + q) ≡˘⟨ +-assoc-≡ p (- q) q 
  (p - q) + q   ≤⟨ +-monoˡ-≤ q p-q≤0 
  0ℚᵘ + q       ≡⟨ +-identityˡ-≡ q 
  q              where open ≤-Reasoning

p≤q⇒0≤q-p :  {p q}  p  q  0ℚᵘ  q - p
p≤q⇒0≤q-p {p} {q} p≤q = begin
  0ℚᵘ   ≈⟨ ≃-sym (+-inverseʳ p) 
  p - p ≤⟨ +-monoˡ-≤ (- p) p≤q 
  q - p  where open ≤-Reasoning

0≤q-p⇒p≤q :  {p q}  0ℚᵘ  q - p  p  q
0≤q-p⇒p≤q {p} {q} 0≤p-q = begin
  p             ≡˘⟨ +-identityˡ-≡ p 
  0ℚᵘ + p       ≤⟨ +-monoˡ-≤ p 0≤p-q 
  q - p + p     ≡⟨ +-assoc-≡ q (- p) p 
  q + (- p + p) ≈⟨ +-congʳ q (+-inverseˡ p) 
  q + 0ℚᵘ       ≡⟨ +-identityʳ-≡ q 
  q              where open ≤-Reasoning

------------------------------------------------------------------------
-- Algebraic structures

+-isMagma : IsMagma _≃_ _+_
+-isMagma = record
  { isEquivalence = ≃-isEquivalence
  ; ∙-cong        = +-cong
  }

+-isSemigroup : IsSemigroup _≃_ _+_
+-isSemigroup = record
  { isMagma = +-isMagma
  ; assoc   = +-assoc
  }

+-0-isMonoid : IsMonoid _≃_ _+_ 0ℚᵘ
+-0-isMonoid = record
  { isSemigroup = +-isSemigroup
  ; identity    = +-identity
  }

+-0-isCommutativeMonoid : IsCommutativeMonoid _≃_ _+_ 0ℚᵘ
+-0-isCommutativeMonoid = record
  { isMonoid = +-0-isMonoid
  ; comm     = +-comm
  }

+-0-isGroup : IsGroup _≃_ _+_ 0ℚᵘ (-_)
+-0-isGroup = record
  { isMonoid = +-0-isMonoid
  ; inverse  = +-inverse
  ; ⁻¹-cong  = -‿cong
  }

+-0-isAbelianGroup : IsAbelianGroup _≃_ _+_ 0ℚᵘ (-_)
+-0-isAbelianGroup = record
  { isGroup = +-0-isGroup
  ; comm    = +-comm
  }

------------------------------------------------------------------------
-- Algebraic bundles

+-magma : Magma 0ℓ 0ℓ
+-magma = record
  { isMagma = +-isMagma
  }

+-semigroup : Semigroup 0ℓ 0ℓ
+-semigroup = record
  { isSemigroup = +-isSemigroup
  }

+-0-monoid : Monoid 0ℓ 0ℓ
+-0-monoid = record
  { isMonoid = +-0-isMonoid
  }

+-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
+-0-commutativeMonoid = record
  { isCommutativeMonoid = +-0-isCommutativeMonoid
  }

+-0-group : Group 0ℓ 0ℓ
+-0-group = record
  { isGroup = +-0-isGroup
  }

+-0-abelianGroup : AbelianGroup 0ℓ 0ℓ
+-0-abelianGroup = record
  { isAbelianGroup = +-0-isAbelianGroup
  }

------------------------------------------------------------------------
-- Properties of _*_
------------------------------------------------------------------------

------------------------------------------------------------------------
-- Raw bundles

*-rawMagma : RawMagma 0ℓ 0ℓ
*-rawMagma = record
  { _≈_ = _≃_
  ; _∙_ = _*_
  }

*-rawMonoid : RawMonoid 0ℓ 0ℓ
*-rawMonoid = record
  { _≈_ = _≃_
  ; _∙_ = _*_
  ; ε   = 1ℚᵘ
  }

------------------------------------------------------------------------
-- Algebraic properties

*-cong : Congruent₂ _≃_ _*_
*-cong {x} {y} {u} {v} (*≡* ↥x↧y≡↥y↧x) (*≡* ↥u↧v≡↥v↧u) = *≡* (begin
  ( x ℤ.*  u) ℤ.* ( y ℤ.*  v) ≡⟨ solve 4  ↥x ↥u ↧y ↧v 
                                       (↥x :* ↥u) :* (↧y :* ↧v) :=
                                       (↥u :* ↧v) :* (↥x :* ↧y))
                                       refl ( x) ( u) ( y) ( v) 
  ( u ℤ.*  v) ℤ.* ( x ℤ.*  y) ≡⟨ cong₂ ℤ._*_ ↥u↧v≡↥v↧u ↥x↧y≡↥y↧x 
  ( v ℤ.*  u) ℤ.* ( y ℤ.*  x) ≡⟨ solve 4  ↥v ↧u ↥y ↧x 
                                       (↥v :* ↧u) :* (↥y :* ↧x) :=
                                       (↥y :* ↥v) :* (↧x :* ↧u))
                                       refl ( v) ( u) ( y) ( x) 
  ( y ℤ.*  v) ℤ.* ( x ℤ.*  u) )
  where open ≡-Reasoning; open ℤ-solver

-- Associativity

*-assoc-↥ : Associative (_≡_ on ↥_) _*_
*-assoc-↥ p q r = ℤ.*-assoc ( p) ( q) ( r)

*-assoc-↧ : Associative (_≡_ on ↧ₙ_) _*_
*-assoc-↧ p q r = ℕ.*-assoc (↧ₙ p) (↧ₙ q) (↧ₙ r)

*-assoc-≡ : Associative _≡_ _*_
*-assoc-≡ p q r = ↥↧≡⇒≡ (*-assoc-↥ p q r) (*-assoc-↧ p q r)

*-assoc : Associative _≃_ _*_
*-assoc p q r = ≃-reflexive (*-assoc-≡ p q r)

-- Commutativity

*-comm-↥ : Commutative (_≡_ on ↥_) _*_
*-comm-↥ p q = ℤ.*-comm ( p) ( q)

*-comm-↧ : Commutative (_≡_ on ↧ₙ_) _*_
*-comm-↧ p q = ℕ.*-comm (↧ₙ p) (↧ₙ q)

*-comm-≡ : Commutative _≡_ _*_
*-comm-≡ p q = ↥↧≡⇒≡ (*-comm-↥ p q) (*-comm-↧ p q)

*-comm : Commutative _≃_ _*_
*-comm p q = ≃-reflexive (*-comm-≡ p q)

-- Identities

*-identityˡ-≡ : LeftIdentity _≡_ 1ℚᵘ _*_
*-identityˡ-≡ p = ↥↧≡⇒≡ (ℤ.*-identityˡ ( p)) (ℕ.+-identityʳ (↧ₙ p))

*-identityʳ-≡ : RightIdentity _≡_ 1ℚᵘ _*_
*-identityʳ-≡ = comm+idˡ⇒idʳ *-comm-≡ {e = 1ℚᵘ} *-identityˡ-≡

*-identity-≡ : Identity _≡_ 1ℚᵘ _*_
*-identity-≡ = *-identityˡ-≡ , *-identityʳ-≡

*-identityˡ : LeftIdentity _≃_ 1ℚᵘ _*_
*-identityˡ p = ≃-reflexive (*-identityˡ-≡ p)

*-identityʳ : RightIdentity _≃_ 1ℚᵘ _*_
*-identityʳ p = ≃-reflexive (*-identityʳ-≡ p)

*-identity : Identity _≃_ 1ℚᵘ _*_
*-identity = *-identityˡ , *-identityʳ

*-inverseˡ :  p {p≢0 : ℤ.∣  p  ≢0}  1/_ p {p≢0} * p  1ℚᵘ
*-inverseˡ p@(mkℚᵘ -[1+ n ] d) = *-inverseˡ (mkℚᵘ +[1+ n ] d)
*-inverseˡ p@(mkℚᵘ +[1+ n ] d) = *≡* $ cong +[1+_] $ begin
  (n ℕ.+ d ℕ.* suc n) ℕ.* 1 ≡⟨ ℕ.*-identityʳ _ 
  (n ℕ.+ d ℕ.* suc n)       ≡⟨ cong (n ℕ.+_) (ℕ.*-suc d n) 
  (n ℕ.+ (d ℕ.+ d ℕ.* n))   ≡⟨ solve 2  n d  n :+ (d :+ d :* n) := d :+ (n :+ n :* d)) refl n d 
  (d ℕ.+ (n ℕ.+ n ℕ.* d))   ≡⟨ cong (d ℕ.+_) (sym (ℕ.*-suc n d)) 
  d ℕ.+ n ℕ.* suc d         ≡˘⟨ ℕ.+-identityʳ _ 
  d ℕ.+ n ℕ.* suc d ℕ.+ 0   
  where open ≡-Reasoning; open ℕ-solver

*-inverseʳ :  p {p≢0 : ℤ.∣  p  ≢0}  p * 1/_ p {p≢0}  1ℚᵘ
*-inverseʳ p {p≢0} = ≃-trans (*-comm p (1/ p)) (*-inverseˡ p {p≢0})

*-zeroˡ : LeftZero _≃_ 0ℚᵘ _*_
*-zeroˡ p = *≡* refl

*-zeroʳ : RightZero _≃_ 0ℚᵘ _*_
*-zeroʳ = FC.comm+zeˡ⇒zeʳ ≃-setoid *-comm *-zeroˡ

*-zero : Zero _≃_ 0ℚᵘ _*_
*-zero = *-zeroˡ , *-zeroʳ

*-distribˡ-+ : _DistributesOverˡ_ _≃_ _*_ _+_
*-distribˡ-+ p q r =
  let ↥p =  p; ↧p =  p
      ↥q =  q; ↧q =  q
      ↥r =  r; ↧r =  r
      eq : (↥p ℤ.* (↥q ℤ.* ↧r ℤ.+ ↥r ℤ.* ↧q)) ℤ.* (↧p ℤ.* ↧q ℤ.* (↧p ℤ.* ↧r)) 
           (↥p ℤ.* ↥q ℤ.* (↧p ℤ.* ↧r) ℤ.+ ↥p ℤ.* ↥r ℤ.* (↧p ℤ.* ↧q)) ℤ.* (↧p ℤ.* (↧q ℤ.* ↧r))
      eq = solve 6  ↥p ↧p ↥q d e f 
           (↥p :* (↥q :* f :+ e :* d)) :* (↧p :* d :* (↧p :* f)) :=
           (↥p :* ↥q :* (↧p :* f) :+ ↥p :* e :* (↧p :* d)) :* (↧p :* (d :* f)))
           refl ↥p ↧p ↥q ↧q ↥r ↧r
  in *≡* eq where open ℤ-solver

*-distribʳ-+ : _DistributesOverʳ_ _≃_ _*_ _+_
*-distribʳ-+ = FC.comm+distrˡ⇒distrʳ ≃-setoid +-cong *-comm *-distribˡ-+

*-distrib-+ : _DistributesOver_ _≃_ _*_ _+_
*-distrib-+ = *-distribˡ-+ , *-distribʳ-+

------------------------------------------------------------------------
-- Properties of _*_ and -_

neg-distribˡ-* :  p q  - (p * q)  - p * q
neg-distribˡ-* p q = *≡* $ cong (ℤ._* ( p ℤ.*  q))
                         $ ℤ.neg-distribˡ-* ( p) ( q)

neg-distribʳ-* :  p q  - (p * q)  p * - q
neg-distribʳ-* p q = *≡* $ cong (ℤ._* ( p ℤ.*  q))
                         $ ℤ.neg-distribʳ-* ( p) ( q)
------------------------------------------------------------------------
-- Properties of _*_ and _≤_

private
  reorder₁ :  a b c d  a ℤ.* b ℤ.* (c ℤ.* d)  a ℤ.* c ℤ.* b ℤ.* d
  reorder₁ = solve 4  a b c d  a :* b :* (c :* d) := a :* c :* b :* d) refl
    where open ℤ-solver

  reorder₂ :  a b c d  a ℤ.* b ℤ.* (c ℤ.* d)  a ℤ.* c ℤ.* (b ℤ.* d)
  reorder₂ = solve 4  a b c d  a :* b :* (c :* d) := a :* c :* (b :* d)) refl
    where open ℤ-solver

*-cancelʳ-≤-pos :  {r}  Positive r   {p q}  p * r  q * r  p  q
*-cancelʳ-≤-pos {mkℚᵘ +[1+ n ] dm} _ {p} {q} (*≤* x≤y)
  = let o = dm ℕ.+ n ℕ.* suc dm ; l₁ =  p ℤ.*  q ; l₂ =  q ℤ.*  p
  in *≤* $ ℤ.*-cancelʳ-≤-pos l₁ l₂ o $ begin
  l₁ ℤ.* (+[1+ n ] ℤ.* +[1+ dm ])          ≡⟨ reorder₂ ( p) _ _ (ℤ.+ (suc dm)) 
   p ℤ.* +[1+ n ] ℤ.* ( q ℤ.* +[1+ dm ]) ≤⟨ x≤y 
   q ℤ.* +[1+ n ] ℤ.* ( p ℤ.* +[1+ dm ]) ≡⟨ reorder₂ ( q) _ _ (ℤ.+ (suc dm)) 
  l₂ ℤ.* (+[1+ n ] ℤ.* +[1+ dm ])           where open ℤ.≤-Reasoning

*-cancelˡ-≤-pos :  {r}  Positive r   {p q}  r * p  r * q  p  q
*-cancelˡ-≤-pos {r} r>0 {p} {q}
  rewrite *-comm-≡ r p
        | *-comm-≡ r q = *-cancelʳ-≤-pos r>0

*-monoˡ-≤-nonNeg :  {r}  NonNegative r  (_* r) Preserves _≤_  _≤_
*-monoˡ-≤-nonNeg r@{mkℚᵘ (ℤ.+ n) _} _ {p} {q} (*≤* x<y) = *≤* $ begin
   p ℤ.*  r ℤ.* ( q   ℤ.*  r)  ≡⟨ reorder₂ ( p) _ _ _ 
  l₁          ℤ.* (ℤ.+ n ℤ.*  r)  ≡⟨ cong (l₁ ℤ.*_) (ℤ.pos-distrib-* n _) 
  l₁          ℤ.* ℤ.+ (n ℕ.* ↧ₙ r) ≤⟨ ℤ.*-monoʳ-≤-nonNeg (n ℕ.* _) x<y 
  l₂          ℤ.* ℤ.+ (n ℕ.* ↧ₙ r) ≡⟨ cong (l₂ ℤ.*_) (sym (ℤ.pos-distrib-* n _)) 
  l₂          ℤ.* (ℤ.+ n ℤ.*  r)  ≡⟨ reorder₂ ( q) _ _ _ 
   q ℤ.*  r ℤ.* ( p   ℤ.*  r)  
  where open ℤ.≤-Reasoning
        l₁ =  p ℤ.*  q ; l₂ =  q ℤ.*  p

*-monoʳ-≤-nonNeg :  {r}  NonNegative r  (r *_) Preserves _≤_  _≤_
*-monoʳ-≤-nonNeg {r} r≥0 {p} {q}
  rewrite *-comm-≡ r p
        | *-comm-≡ r q = *-monoˡ-≤-nonNeg r≥0

*-monoʳ-≤-pos :  {r}  Positive r  (r *_) Preserves _≤_  _≤_
*-monoʳ-≤-pos {r} = (*-monoʳ-≤-nonNeg {r})  (positive⇒nonNegative {r})

*-monoˡ-≤-pos :  {r}  Positive r  (_* r) Preserves _≤_  _≤_
*-monoˡ-≤-pos {r} = *-monoˡ-≤-nonNeg  (positive⇒nonNegative {r})

------------------------------------------------------------------------
-- Properties of _*_ and _<_

*-monoˡ-<-pos :  {r} (r>0 : Positive r)  (_* r) Preserves _<_  _<_
*-monoˡ-<-pos s@{mkℚᵘ +[1+ n ] d} _ {p} {q} (*<* x<y) = *<* $ begin-strict
   p ℤ.*   s ℤ.* ( q  ℤ.*  s) ≡⟨ reorder₁ ( p) _ _ _ 
   p ℤ.*   q ℤ.*   s  ℤ.*  s  <⟨ ℤ.*-monoʳ-<-pos d (ℤ.*-monoʳ-<-pos n x<y) 
   q ℤ.*   p ℤ.*   s  ℤ.*  s  ≡˘⟨ reorder₁ ( q) _ _ _ 
   q ℤ.*   s ℤ.* ( p  ℤ.*  s)  where open ℤ.≤-Reasoning

*-monoʳ-<-pos :  {r} (r>0 : Positive r)  (r *_) Preserves _<_  _<_
*-monoʳ-<-pos {r} r>0 {p} {q}
  rewrite *-comm-≡ r p
        | *-comm-≡ r q = *-monoˡ-<-pos r>0

*-cancelˡ-<-nonNeg :  {r} (r≥0 : NonNegative r) {p q}  r * p < r * q  p < q
*-cancelˡ-<-nonNeg {mkℚᵘ (ℤ.+ n) dm} _ {p} {q} (*<* x<y) = *<* $
  ℤ.*-cancelˡ-<-nonNeg s $ begin-strict
  ℤ.+ s         ℤ.* r₁          ≡⟨ cong (ℤ._* r₁) (sym (ℤ.pos-distrib-* n (suc dm))) 
  ℤ.+ n ℤ.* d   ℤ.* r₁          ≡⟨ reorder₂ (ℤ.+ n) _ _ _ 
  ℤ.+ n ℤ.*  p ℤ.* (d ℤ.*  q) <⟨ x<y 
  ℤ.+ n ℤ.*  q ℤ.* (d ℤ.*  p) ≡⟨ reorder₂ (ℤ.+ n) _ _ _ 
  ℤ.+ n ℤ.* d   ℤ.* r₂          ≡⟨ cong (ℤ._* r₂) ( ℤ.pos-distrib-* n (suc dm)) 
  ℤ.+ s ℤ.* r₂                  
  where open ℤ.≤-Reasoning
        d+ = suc dm ; s = n ℕ.* d+ ; d = ℤ.+ d+ ; r₁ =  p ℤ.*  q ; r₂ =  q ℤ.*  p

*-cancelʳ-<-nonNeg :  {r} (r≥0 : NonNegative r) {p q}  p * r < q * r  p < q
*-cancelʳ-<-nonNeg {r} r≥0 {p} {q}
  rewrite *-comm-≡ p r
        | *-comm-≡ q r = *-cancelˡ-<-nonNeg {r} r≥0

------------------------------------------------------------------------
-- Algebraic structures

*-isMagma : IsMagma _≃_ _*_
*-isMagma = record
  { isEquivalence = ≃-isEquivalence
  ; ∙-cong        = *-cong
  }

*-isSemigroup : IsSemigroup _≃_ _*_
*-isSemigroup = record
  { isMagma = *-isMagma
  ; assoc   = *-assoc
  }

*-1-isMonoid : IsMonoid _≃_ _*_ 1ℚᵘ
*-1-isMonoid = record
  { isSemigroup = *-isSemigroup
  ; identity    = *-identity
  }

*-1-isCommutativeMonoid : IsCommutativeMonoid _≃_ _*_ 1ℚᵘ
*-1-isCommutativeMonoid = record
  { isMonoid = *-1-isMonoid
  ; comm     = *-comm
  }

+-*-isRing : IsRing _≃_ _+_ _*_ -_ 0ℚᵘ 1ℚᵘ
+-*-isRing = record
  { +-isAbelianGroup = +-0-isAbelianGroup
  ; *-isMonoid       = *-1-isMonoid
  ; distrib          = *-distrib-+
  ; zero             = *-zero
  }

+-*-isCommutativeRing : IsCommutativeRing _≃_ _+_ _*_ -_ 0ℚᵘ 1ℚᵘ
+-*-isCommutativeRing = record
  { isRing = +-*-isRing
  ; *-comm = *-comm
  }

------------------------------------------------------------------------
-- Algebraic bundles

*-magma : Magma 0ℓ 0ℓ
*-magma = record
  { isMagma = *-isMagma
  }

*-semigroup : Semigroup 0ℓ 0ℓ
*-semigroup = record
  { isSemigroup = *-isSemigroup
  }

*-1-monoid : Monoid 0ℓ 0ℓ
*-1-monoid = record
  { isMonoid = *-1-isMonoid
  }

*-1-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
*-1-commutativeMonoid = record
  { isCommutativeMonoid = *-1-isCommutativeMonoid
  }

+-*-ring : Ring 0ℓ 0ℓ
+-*-ring = record
  { isRing = +-*-isRing
  }

+-*-commutativeRing : CommutativeRing 0ℓ 0ℓ
+-*-commutativeRing = record
  { isCommutativeRing = +-*-isCommutativeRing
  }