------------------------------------------------------------------------ -- The Agda standard library -- -- Left-biased universe-sensitive functor and monad instances for These. -- ------------------------------------------------------------------------ -- To minimize the universe level of the RawFunctor, we require that -- elements of B are "lifted" to a copy of B at a higher universe level -- (a ⊔ b). -- See the Data.Product.Categorical.Examples for how this is done in a -- Product-based similar setting. -- This functor can be understood as a notion of computation which can -- either fail (this), succeed (that) or accumulate warnings whilst -- delivering a successful computation (these). -- It is a good alternative to Data.Product.Categorical when the notion -- of warnings does not have a neutral element (e.g. List⁺). {-# OPTIONS --without-K --safe #-} open import Level open import Algebra module Data.These.Categorical.Left {c ℓ} (W : Semigroup c ℓ) (b : Level) where open Semigroup W open import Data.These.Categorical.Left.Base Carrier b public open import Data.These.Base open import Category.Applicative open import Category.Monad module _ {a b} {A : Set a} {B : Set b} where applicative : RawApplicative Theseₗ applicative = record { pure = that ; _⊛_ = ap } where ap : ∀ {A B}→ Theseₗ (A → B) → Theseₗ A → Theseₗ B ap (this w) t = this w ap (that f) t = map₂ f t ap (these w f) t = map (w ∙_) f t monad : RawMonad Theseₗ monad = record { return = that ; _>>=_ = bind } where bind : ∀ {A B} → Theseₗ A → (A → Theseₗ B) → Theseₗ B bind (this w) f = this w bind (that t) f = f t bind (these w t) f = map₁ (w ∙_) (f t)