{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (StrictTotalOrder)
module Data.Tree.AVL.Map
{a ℓ₁ ℓ₂} (strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂)
where
open import Data.Bool.Base using (Bool)
open import Data.List.Base using (List)
open import Data.Maybe.Base using (Maybe)
open import Data.Nat.Base using (ℕ)
open import Data.Product using (_×_)
open import Level using (Level; _⊔_)
private
variable
l v w x : Level
A : Set l
V : Set v
W : Set w
X : Set x
import Data.Tree.AVL strictTotalOrder as AVL
open StrictTotalOrder strictTotalOrder renaming (Carrier to Key)
Map : (V : Set v) → Set (a ⊔ v ⊔ ℓ₂)
Map V = AVL.Tree (AVL.const V)
empty : Map V
empty = AVL.empty
singleton : Key → V → Map V
singleton = AVL.singleton
insert : Key → V → Map V → Map V
insert = AVL.insert
insertWith : Key → (Maybe V → V) → Map V → Map V
insertWith = AVL.insertWith
delete : Key → Map V → Map V
delete = AVL.delete
lookup : Key → Map V → Maybe V
lookup = AVL.lookup
map : (V → W) → Map V → Map W
map f = AVL.map f
infix 4 _∈?_
_∈?_ : Key → Map V → Bool
_∈?_ = AVL._∈?_
headTail : Map V → Maybe ((Key × V) × Map V)
headTail = AVL.headTail
initLast : Map V → Maybe (Map V × (Key × V))
initLast = AVL.initLast
foldr : (Key → V → A → A) → A → Map V → A
foldr cons = AVL.foldr (λ {k} → cons k)
fromList : List (Key × V) → Map V
fromList = AVL.fromList
toList : Map V → List (Key × V)
toList = AVL.toList
size : Map V → ℕ
size = AVL.size
unionWith : (V → Maybe W → W) →
Map V → Map W → Map W
unionWith f = AVL.unionWith f
union : Map V → Map V → Map V
union = AVL.union
unionsWith : (V → Maybe V → V) → List (Map V) → Map V
unionsWith f = AVL.unionsWith f
unions : List (Map V) → Map V
unions = AVL.unions
intersectionWith : (V → W → X) → Map V → Map W → Map X
intersectionWith f = AVL.intersectionWith f
intersection : Map V → Map V → Map V
intersection = AVL.intersection
intersectionsWith : (V → V → V) → List (Map V) → Map V
intersectionsWith f = AVL.intersectionsWith f
intersections : List (Map V) → Map V
intersections = AVL.intersections