------------------------------------------------------------------------
-- The Agda standard library
--
-- Some Vector-related properties
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

module Data.Vec.Functional.Properties where

open import Data.Empty using (⊥-elim)
open import Data.Fin.Base
open import Data.Nat as 
import Data.Nat.Properties as ℕₚ
open import Data.Product as Product using (_×_; _,_; proj₁; proj₂)
open import Data.List as L using (List)
import Data.List.Properties as Lₚ
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
open import Data.Vec as V using (Vec)
import Data.Vec.Properties as Vₚ
open import Data.Vec.Functional
open import Function.Base
open import Level using (Level)
open import Relation.Binary as B
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (Dec; does; yes; no)
open import Relation.Nullary.Decidable using (map′)
open import Relation.Nullary.Product using (_×-dec_)

import Data.Fin.Properties as Finₚ

private
  variable
    a b c : Level
    A : Set a
    B : Set b
    C : Set c

------------------------------------------------------------------------

module _ {n} {xs ys : Vector A (suc n)} where

  ∷-cong : head xs  head ys  tail xs  tail ys  xs  ys
  ∷-cong eq _ zero    = eq
  ∷-cong _ eq (suc i) = eq i

  ∷-injective : xs  ys  head xs  head ys × tail xs  tail ys
  ∷-injective eq = eq zero , eq  suc

≗-dec : B.DecidableEquality A 
         {n}  B.Decidable {A = Vector A n} _≗_
≗-dec _≟_ {zero}  xs ys = yes λ ()
≗-dec _≟_ {suc n} xs ys =
  map′ (Product.uncurry ∷-cong) ∷-injective
       (head xs  head ys ×-dec ≗-dec _≟_ (tail xs) (tail ys))

------------------------------------------------------------------------
-- updateAt

-- (+) updateAt i actually updates the element at index i.

updateAt-updates :  {n} (i : Fin n) {f : A  A} (xs : Vector A n) 
                   updateAt i f xs i  f (xs i)
updateAt-updates zero    xs = refl
updateAt-updates (suc i) xs = updateAt-updates i (tail xs)

-- (-) updateAt i does not touch the elements at other indices.

updateAt-minimal :  {n} (i j : Fin n) {f : A  A} (xs : Vector A n) 
                   i  j  updateAt j f xs i  xs i
updateAt-minimal zero    zero    xs 0≢0 = ⊥-elim (0≢0 refl)
updateAt-minimal zero    (suc j) xs _   = refl
updateAt-minimal (suc i) zero    xs _   = refl
updateAt-minimal (suc i) (suc j) xs i≢j = updateAt-minimal i j (tail xs) (i≢j  cong suc)

-- updateAt i is a monoid morphism from A → A to Vector A n → Vector A n.

updateAt-id-relative :  {n} (i : Fin n) {f : A  A} (xs : Vector A n) 
                       f (xs i)  xs i 
                       updateAt i f xs  xs
updateAt-id-relative zero    xs eq zero    = eq
updateAt-id-relative zero    xs eq (suc j) = refl
updateAt-id-relative (suc i) xs eq zero    = refl
updateAt-id-relative (suc i) xs eq (suc j) = updateAt-id-relative i (tail xs) eq j

updateAt-id :  {n} (i : Fin n) (xs : Vector A n) 
              updateAt i id xs  xs
updateAt-id i xs = updateAt-id-relative i xs refl

updateAt-compose-relative :  {n} (i : Fin n) {f g h : A  A} (xs : Vector A n) 
                            f (g (xs i))  h (xs i) 
                            updateAt i f (updateAt i g xs)  updateAt i h xs
updateAt-compose-relative zero    xs eq zero    = eq
updateAt-compose-relative zero    xs eq (suc j) = refl
updateAt-compose-relative (suc i) xs eq zero    = refl
updateAt-compose-relative (suc i) xs eq (suc j) = updateAt-compose-relative i (tail xs) eq j

updateAt-compose :  {n} (i : Fin n) {f g : A  A} (xs : Vector A n) 
                   updateAt i f (updateAt i g xs)  updateAt i (f  g) xs
updateAt-compose i xs = updateAt-compose-relative i xs refl

updateAt-cong-relative :  {n} (i : Fin n) {f g : A  A} (xs : Vector A n) 
                         f (xs i)  g (xs i) 
                         updateAt i f xs  updateAt i g xs
updateAt-cong-relative zero    xs eq zero    = eq
updateAt-cong-relative zero    xs eq (suc j) = refl
updateAt-cong-relative (suc i) xs eq zero    = refl
updateAt-cong-relative (suc i) xs eq (suc j) = updateAt-cong-relative i (tail xs) eq j

updateAt-cong :  {n} (i : Fin n) {f g : A  A} 
                f  g  (xs : Vector A n)  updateAt i f xs  updateAt i g xs
updateAt-cong zero    eq xs zero    = eq (xs zero)
updateAt-cong zero    eq xs (suc j) = refl
updateAt-cong (suc i) eq xs zero    = refl
updateAt-cong (suc i) eq xs (suc j) = updateAt-cong i eq (tail xs) j

-- The order of updates at different indices i ≢ j does not matter.

updateAt-commutes :  {n} (i j : Fin n) {f g : A  A}  i  j  (xs : Vector A n) 
                    updateAt i f (updateAt j g xs)  updateAt j g (updateAt i f xs)
updateAt-commutes zero    zero    0≢0 xs k       = ⊥-elim (0≢0 refl)
updateAt-commutes zero    (suc j) _   xs zero    = refl
updateAt-commutes zero    (suc j) _   xs (suc k) = refl
updateAt-commutes (suc i) zero    _   xs zero    = refl
updateAt-commutes (suc i) zero    _   xs (suc k) = refl
updateAt-commutes (suc i) (suc j) _   xs zero    = refl
updateAt-commutes (suc i) (suc j) i≢j xs (suc k) = updateAt-commutes i j (i≢j  cong suc) (tail xs) k

------------------------------------------------------------------------
-- map

map-id :  {n}  (xs : Vector A n)  map id xs  xs
map-id xs = λ _  refl

map-cong :  {n} {f g : A  B}  f  g  (xs : Vector A n)  map f xs  map g xs
map-cong f≗g xs = f≗g  xs

map-∘ :  {n} {f : B  C} {g : A  B} 
        (xs : Vector A n)  map (f  g) xs  map f (map g xs)
map-∘ xs = λ _  refl

lookup-map :  {n} (i : Fin n) (f : A  B) (xs : Vector A n) 
             map f xs i  f (xs i)
lookup-map i f xs = refl

map-updateAt :  {n} {f : A  B} {g : A  A} {h : B  B}
               (xs : Vector A n) (i : Fin n) 
               f (g (xs i))  h (f (xs i)) 
               map f (updateAt i g xs)  updateAt i h (map f xs)
map-updateAt {n = suc n}       {f = f} xs zero    eq zero    = eq
map-updateAt {n = suc n}       {f = f} xs zero    eq (suc j) = refl
map-updateAt {n = suc (suc n)} {f = f} xs (suc i) eq zero    = refl
map-updateAt {n = suc (suc n)} {f = f} xs (suc i) eq (suc j) = map-updateAt {f = f} (tail xs) i eq j

------------------------------------------------------------------------
-- _++_

lookup-++-< :  {m n} (xs : Vector A m) (ys : Vector A n) 
               i (i<m : toℕ i ℕ.< m) 
              (xs ++ ys) i  xs (fromℕ< i<m)
lookup-++-< {m = m} xs ys i i<m = cong Sum.[ xs , ys ] (Finₚ.splitAt-< m i i<m)

lookup-++-≥ :  {m n} (xs : Vector A m) (ys : Vector A n) 
               i (i≥m : toℕ i ℕ.≥ m) 
              (xs ++ ys) i  ys (reduce≥ i i≥m)
lookup-++-≥ {m = m} xs ys i i≥m = cong Sum.[ xs , ys ] (Finₚ.splitAt-≥ m i i≥m)

lookup-++ˡ :  {m n} (xs : Vector A m) (ys : Vector A n) i 
             (xs ++ ys) (inject+ n i)  xs i
lookup-++ˡ {m = m} {n = n} xs ys i = cong Sum.[ xs , ys ] (Finₚ.splitAt-inject+ m n i)

lookup-++ʳ :  {m n} (xs : Vector A m) (ys : Vector A n) i 
             (xs ++ ys) (raise m i)  ys i
lookup-++ʳ {m = m} {n = n} xs ys i = cong Sum.[ xs , ys ] (Finₚ.splitAt-raise m n i)

module _ {m} {ys ys′ : Vector A m} where

  ++-cong :  {n} (xs xs′ : Vector A n) 
            xs  xs′  ys  ys′  xs ++ ys  xs′ ++ ys′
  ++-cong {n} xs xs′ eq₁ eq₂ i with toℕ i ℕₚ.<? n
  ... | yes i<n = begin
    (xs ++ ys) i      ≡⟨ lookup-++-< xs ys i i<n 
    xs (fromℕ< i<n)   ≡⟨ eq₁ (fromℕ< i<n) 
    xs′ (fromℕ< i<n)  ≡˘⟨ lookup-++-< xs′ ys′ i i<n 
    (xs′ ++ ys′) i    
    where open ≡-Reasoning
  ... | no i≮n = begin
    (xs ++ ys) i               ≡⟨ lookup-++-≥ xs ys i (ℕₚ.≮⇒≥ i≮n) 
    ys (reduce≥ i (ℕₚ.≮⇒≥ i≮n))   ≡⟨ eq₂ (reduce≥ i (ℕₚ.≮⇒≥ i≮n)) 
    ys′ (reduce≥ i (ℕₚ.≮⇒≥ i≮n))  ≡˘⟨ lookup-++-≥ xs′ ys′ i (ℕₚ.≮⇒≥ i≮n) 
    (xs′ ++ ys′) i             
    where open ≡-Reasoning

  ++-injectiveˡ :  {n} (xs xs′ : Vector A n) 
                  xs ++ ys  xs′ ++ ys′  xs  xs′
  ++-injectiveˡ xs xs′ eq i = begin
    xs i                        ≡˘⟨ lookup-++ˡ xs ys i 
    (xs ++ ys) (inject+ m i)    ≡⟨ eq (inject+ m i) 
    (xs′ ++ ys′) (inject+ m i)  ≡⟨ lookup-++ˡ xs′ ys′ i 
    xs′ i                       
    where open ≡-Reasoning

  ++-injectiveʳ :  {n} (xs xs′ : Vector A n) 
                  xs ++ ys  xs′ ++ ys′  ys  ys′
  ++-injectiveʳ {n} xs xs′ eq i = begin
    ys i                      ≡˘⟨ lookup-++ʳ xs ys i 
    (xs ++ ys) (raise n i)    ≡⟨ eq (raise n i)   
    (xs′ ++ ys′) (raise n i)  ≡⟨ lookup-++ʳ xs′ ys′ i 
    ys′ i                     
    where open ≡-Reasoning

  ++-injective :  {n} (xs xs′ : Vector A n) 
                 xs ++ ys  xs′ ++ ys′  xs  xs′ × ys  ys′
  ++-injective xs xs′ eq = ++-injectiveˡ xs xs′ eq , ++-injectiveʳ xs xs′ eq

------------------------------------------------------------------------
-- insert

insert-lookup :  {n} (xs : Vector A n) (i : Fin (suc n)) (v : A) 
                insert xs i v i  v
insert-lookup {n = n}     xs zero    v = refl
insert-lookup {n = suc n} xs (suc i) v = insert-lookup (tail xs) i v

insert-punchIn :  {n} (xs : Vector A n) (i : Fin (suc n)) (v : A)
                 (j : Fin n) 
                 insert xs i v (punchIn i j)  xs j
insert-punchIn {n = suc n} xs zero    v j       = refl
insert-punchIn {n = suc n} xs (suc i) v zero    = refl
insert-punchIn {n = suc n} xs (suc i) v (suc j) = insert-punchIn (tail xs) i v j

------------------------------------------------------------------------
-- remove

remove-punchOut :  {n} (xs : Vector A (suc n))
                  {i : Fin (suc n)} {j : Fin (suc n)} (i≢j : i  j) 
                  remove i xs (punchOut i≢j)  xs j
remove-punchOut {n = n}     xs {zero}  {zero}  i≢j = ⊥-elim (i≢j refl)
remove-punchOut {n = suc n} xs {zero}  {suc j} i≢j = refl
remove-punchOut {n = suc n} xs {suc i} {zero}  i≢j = refl
remove-punchOut {n = suc n} xs {suc i} {suc j} i≢j = remove-punchOut (tail xs) (i≢j  cong suc)

remove-insert :  {n} (xs : Vector A n) (i : Fin (suc n)) (v : A) 
                remove i (insert xs i v)  xs
remove-insert xs zero    v j       = refl
remove-insert xs (suc i) v zero    = refl
remove-insert xs (suc i) v (suc j) = remove-insert (tail xs) i v j

insert-remove :  {n} (xs : Vector A (suc n)) (i : Fin (suc n)) 
                insert (remove i xs) i (xs i)  xs
insert-remove {n = n}     xs zero    zero    = refl
insert-remove {n = n}     xs zero    (suc j) = refl
insert-remove {n = suc n} xs (suc i) zero    = refl
insert-remove {n = suc n} xs (suc i) (suc j) = insert-remove (tail xs) i j

------------------------------------------------------------------------
-- Conversion functions

toVec∘fromVec :  {n}  (xs : Vec A n)  toVec (fromVec xs)  xs
toVec∘fromVec = Vₚ.tabulate∘lookup

fromVec∘toVec :  {n}  (xs : Vector A n)  fromVec (toVec xs)  xs
fromVec∘toVec = Vₚ.lookup∘tabulate

toList∘fromList : (xs : List A)  toList (fromList xs)  xs
toList∘fromList = Lₚ.tabulate-lookup