{-# OPTIONS --without-K --safe #-}
module Function.Properties.Inverse where
open import Function.Bundles using (Inverse; _↔_)
open import Level using (Level)
open import Relation.Binary using (Setoid; IsEquivalence)
open import Relation.Binary.PropositionalEquality using (setoid)
import Function.Construct.Identity as Identity
import Function.Construct.Symmetry as Symmetry
import Function.Construct.Composition as Composition
private
variable
a b ℓ₁ ℓ₂ : Level
module _ (R : Setoid a ℓ₁) (S : Setoid b ℓ₂) where
isEquivalence : IsEquivalence (Inverse {a} {b})
isEquivalence = record
{ refl = λ {x} → Identity.inverse x
; sym = Symmetry.inverse
; trans = Composition.inverse
}
↔-isEquivalence : IsEquivalence {ℓ = ℓ₁} _↔_
↔-isEquivalence = record
{ refl = λ {x} → Identity.inverse (setoid x)
; sym = Symmetry.inverse
; trans = Composition.inverse
}