------------------------------------------------------------------------
-- The Agda standard library
--
-- Examples showing how the reflective ring solver may be used.
------------------------------------------------------------------------

module README.Tactic.RingSolver where

-- You can ignore this bit! We're just overloading the literals Agda uses for
-- numbers. This bit isn't necessary if you're just using Nats, or if you
-- construct your type directly. We only really do it here so that we can use
-- different numeric types in the same file.

open import Agda.Builtin.FromNat
open import Data.Nat using ()
open import Data.Integer using ()
import Data.Nat.Literals as 
import Data.Integer.Literals as 

instance
  numberNat : Number 
  numberNat = ℕ.number

instance
  numberInt : Number 
  numberInt = ℤ.number

------------------------------------------------------------------------------
-- Imports!

open import Data.List as List using (List; _∷_; [])
open import Function
open import Relation.Binary.PropositionalEquality as 
  using (subst; _≡_; module ≡-Reasoning)
open import Data.Bool as Bool using (Bool; true; false; if_then_else_)
open import Data.Unit using (; tt)

open import Tactic.RingSolver.Core.AlmostCommutativeRing using (AlmostCommutativeRing)

------------------------------------------------------------------------------
-- Integer examples
------------------------------------------------------------------------------

module IntegerExamples where
  open import Data.Integer.Tactic.RingSolver

  open AlmostCommutativeRing ring

  -- Everything is automatic: you just ask Agda to solve it and it does!
  lemma₁ :  x y  x + y * 1 + 3  3 + 1 + y + x + - 1
  lemma₁ = solve-∀

  lemma₂ :  x y  (x + y) ^ 2  x ^ 2 + 2 * x * y + y ^ 2
  lemma₂ = solve-∀

  -- It can interact with manual proofs as well.
  lemma₃ :  x y  x + y * 1 + 3  2 + 1 + y + x
  lemma₃ x y = begin
    x + y * 1 + 3 ≡⟨ +-comm x (y * 1)  +-cong  refl 
    y * 1 + x + 3 ≡⟨ solve (x  y  []) 
    3 + y + x     ≡⟨⟩
    2 + 1 + y + x 
    where open ≡-Reasoning

------------------------------------------------------------------------------
-- Natural examples
------------------------------------------------------------------------------

module NaturalExamples where
  open import Data.Nat.Tactic.RingSolver

  open AlmostCommutativeRing ring

  -- The solver is flexible enough to work with ℕ (even though it asks
  -- for rings!)
  lemma₁ :  x y  x + y * 1 + 3  2 + 1 + y + x
  lemma₁ = solve-∀

------------------------------------------------------------------------------
-- Checking invariants
------------------------------------------------------------------------------
-- The solver makes it easy to prove invariants, without having to rewrite
-- proof code every time something changes in the data structure.

module _ {a} {A : Set a} (_≤_ : A  A  Bool) where
  open import Data.Nat.Tactic.RingSolver
  open AlmostCommutativeRing ring

  -- A Skew Heap, indexed by its size.
  data Tree :   Set a where
    leaf : Tree 0
    node :  {n m}  A  Tree n  Tree m  Tree (1 + n + m)

  -- A substitution operator, to clean things up.
  infixr 1 _⇒_
  _⇒_ :  {n}  Tree n   {m}  n  m  Tree m
  x  n≈m  = subst Tree n≈m x

  open ≡-Reasoning

  _∪_ :  {n m}  Tree n  Tree m  Tree (n + m)
  leaf                  ys                   = ys
  node {a} {b} x xl xr  leaf                 =
    node x xl xr  solve (a  b  [])
  node {a} {b} x xl xr  node {c} {d} y yl yr =
      if x  y
        then node x (node y yl yr  xr) xl  begin
          1 + (1 + c + d + b) + a ≡⟨ solve (a  b  c  d  []) 
          1 + a + b + (1 + c + d) 
        else node y (node x xl xr  yr) yl  begin
          1 + (1 + a + b + d) + c ≡⟨ solve (a  b  c  d  []) 
          1 + a + b + (1 + c + d)