{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Construct.Flip where
open import Function.Base using (flip; _∘_)
open import Data.Product
module _ {a ℓ} {A : Set a} (∼ : Rel A ℓ) where
reflexive : Reflexive ∼ → Reflexive (flip ∼)
reflexive refl = refl
symmetric : Symmetric ∼ → Symmetric (flip ∼)
symmetric sym = sym
transitive : Transitive ∼ → Transitive (flip ∼)
transitive trans = flip trans
asymmetric : Asymmetric ∼ → Asymmetric (flip ∼)
asymmetric asym = asym
total : Total ∼ → Total (flip ∼)
total total x y = total y x
respects : ∀ {p} (P : A → Set p) → Symmetric ∼ →
P Respects ∼ → P Respects flip ∼
respects _ sym resp ∼ = resp (sym ∼)
max : ∀ {⊥} → Minimum ∼ ⊥ → Maximum (flip ∼) ⊥
max min = min
min : ∀ {⊤} → Maximum ∼ ⊤ → Minimum (flip ∼) ⊤
min max = max
module _ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
(≈ : REL A B ℓ₁) (∼ : REL A B ℓ₂) where
implies : ≈ ⇒ ∼ → flip ≈ ⇒ flip ∼
implies impl = impl
irreflexive : Irreflexive ≈ ∼ → Irreflexive (flip ≈) (flip ∼)
irreflexive irrefl = irrefl
module _ {a ℓ₁ ℓ₂} {A : Set a} (≈ : Rel A ℓ₁) (∼ : Rel A ℓ₂) where
antisymmetric : Antisymmetric ≈ ∼ → Antisymmetric (flip ≈) (flip ∼)
antisymmetric antisym = antisym
trichotomous : Trichotomous ≈ ∼ → Trichotomous (flip ≈) (flip ∼)
trichotomous compare x y = compare y x
module _ {a ℓ₁ ℓ₂} {A : Set a} (∼₁ : Rel A ℓ₁) (∼₂ : Rel A ℓ₂) where
respects₂ : Symmetric ∼₂ → ∼₁ Respects₂ ∼₂ → flip ∼₁ Respects₂ flip ∼₂
respects₂ sym (resp₁ , resp₂) = (resp₂ ∘ sym , resp₁ ∘ sym)
module _ {a b ℓ} {A : Set a} {B : Set b} (∼ : REL A B ℓ) where
decidable : Decidable ∼ → Decidable (flip ∼)
decidable dec x y = dec y x
module _ {a ℓ} {A : Set a} {≈ : Rel A ℓ} where
isEquivalence : IsEquivalence ≈ → IsEquivalence (flip ≈)
isEquivalence eq = record
{ refl = reflexive ≈ Eq.refl
; sym = symmetric ≈ Eq.sym
; trans = transitive ≈ Eq.trans
}
where module Eq = IsEquivalence eq
isDecEquivalence : IsDecEquivalence ≈ → IsDecEquivalence (flip ≈)
isDecEquivalence dec = record
{ isEquivalence = isEquivalence Dec.isEquivalence
; _≟_ = decidable ≈ Dec._≟_
}
where module Dec = IsDecEquivalence dec
module _ {a ℓ₁ ℓ₂} {A : Set a} {≈ : Rel A ℓ₁} {∼ : Rel A ℓ₂} where
isPreorder : IsPreorder ≈ ∼ → IsPreorder (flip ≈) (flip ∼)
isPreorder O = record
{ isEquivalence = isEquivalence O.isEquivalence
; reflexive = implies ≈ ∼ O.reflexive
; trans = transitive ∼ O.trans
}
where module O = IsPreorder O
isPartialOrder : IsPartialOrder ≈ ∼ → IsPartialOrder (flip ≈) (flip ∼)
isPartialOrder O = record
{ isPreorder = isPreorder O.isPreorder
; antisym = antisymmetric ≈ ∼ O.antisym
}
where module O = IsPartialOrder O
isTotalOrder : IsTotalOrder ≈ ∼ → IsTotalOrder (flip ≈) (flip ∼)
isTotalOrder O = record
{ isPartialOrder = isPartialOrder O.isPartialOrder
; total = total ∼ O.total
}
where module O = IsTotalOrder O
isDecTotalOrder : IsDecTotalOrder ≈ ∼ → IsDecTotalOrder (flip ≈) (flip ∼)
isDecTotalOrder O = record
{ isTotalOrder = isTotalOrder O.isTotalOrder
; _≟_ = decidable ≈ O._≟_
; _≤?_ = decidable ∼ O._≤?_
}
where module O = IsDecTotalOrder O
isStrictPartialOrder : IsStrictPartialOrder ≈ ∼ →
IsStrictPartialOrder (flip ≈) (flip ∼)
isStrictPartialOrder O = record
{ isEquivalence = isEquivalence O.isEquivalence
; irrefl = irreflexive ≈ ∼ O.irrefl
; trans = transitive ∼ O.trans
; <-resp-≈ = respects₂ ∼ ≈ O.Eq.sym O.<-resp-≈
}
where module O = IsStrictPartialOrder O
isStrictTotalOrder : IsStrictTotalOrder ≈ ∼ →
IsStrictTotalOrder (flip ≈) (flip ∼)
isStrictTotalOrder O = record
{ isEquivalence = isEquivalence O.isEquivalence
; trans = transitive ∼ O.trans
; compare = trichotomous ≈ ∼ O.compare
} where module O = IsStrictTotalOrder O
module _ {a ℓ} where
setoid : Setoid a ℓ → Setoid a ℓ
setoid S = record
{ _≈_ = flip S._≈_
; isEquivalence = isEquivalence S.isEquivalence
}
where module S = Setoid S
decSetoid : DecSetoid a ℓ → DecSetoid a ℓ
decSetoid S = record
{ _≈_ = flip S._≈_
; isDecEquivalence = isDecEquivalence S.isDecEquivalence
}
where module S = DecSetoid S
module _ {a ℓ₁ ℓ₂} where
preorder : Preorder a ℓ₁ ℓ₂ → Preorder a ℓ₁ ℓ₂
preorder O = record
{ isPreorder = isPreorder O.isPreorder
}
where module O = Preorder O
poset : Poset a ℓ₁ ℓ₂ → Poset a ℓ₁ ℓ₂
poset O = record
{ isPartialOrder = isPartialOrder O.isPartialOrder
}
where module O = Poset O
totalOrder : TotalOrder a ℓ₁ ℓ₂ → TotalOrder a ℓ₁ ℓ₂
totalOrder O = record
{ isTotalOrder = isTotalOrder O.isTotalOrder
}
where module O = TotalOrder O
decTotalOrder : DecTotalOrder a ℓ₁ ℓ₂ → DecTotalOrder a ℓ₁ ℓ₂
decTotalOrder O = record
{ isDecTotalOrder = isDecTotalOrder O.isDecTotalOrder
}
where module O = DecTotalOrder O
strictPartialOrder : StrictPartialOrder a ℓ₁ ℓ₂ →
StrictPartialOrder a ℓ₁ ℓ₂
strictPartialOrder O = record
{ isStrictPartialOrder = isStrictPartialOrder O.isStrictPartialOrder
}
where module O = StrictPartialOrder O
strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂ →
StrictTotalOrder a ℓ₁ ℓ₂
strictTotalOrder O = record
{ isStrictTotalOrder = isStrictTotalOrder O.isStrictTotalOrder
}
where module O = StrictTotalOrder O