{-# OPTIONS --without-K --safe #-}
open import Data.Product using (_,_)
open import Function.Base using (const; _∘_)
open import Function.Definitions using (Congruent)
open import Function.Construct.Composition using (surjective)
open import Relation.Binary
open import Relation.Binary.Morphism.Structures
module Relation.Binary.Morphism.Construct.Constant
{a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
(≈₁ : Rel A ℓ₁) (≈₂ : Rel B ℓ₂) (≈-refl : Reflexive ≈₂)
where
isRelHomomorphism : ∀ x → IsRelHomomorphism ≈₁ ≈₂ (const x)
isRelHomomorphism x = record
{ cong = const ≈-refl
}
module _ {ℓ₃ ℓ₄} (∼₁ : Rel A ℓ₃) (∼₂ : Rel B ℓ₄) where
isOrderHomomorphism : Reflexive ∼₂ →
∀ x → IsOrderHomomorphism ≈₁ ≈₂ ∼₁ ∼₂ (const x)
isOrderHomomorphism ∼-refl x = record
{ cong = const ≈-refl
; mono = const ∼-refl
}