{-# OPTIONS --without-K --safe #-}
{-# OPTIONS --warn=noUserWarning #-}
module Data.Integer.Properties where
open import Algebra.Bundles
import Algebra.Morphism as Morphism
open import Algebra.Construct.NaturalChoice.Base
import Algebra.Construct.NaturalChoice.MinMaxOp as MinMaxOp
import Algebra.Properties.AbelianGroup
open import Data.Bool.Base using (T; true; false)
open import Data.Empty using (⊥-elim)
open import Data.Integer.Base renaming (suc to sucℤ)
open import Data.Nat as ℕ
using (ℕ; suc; zero; _∸_; s≤s; z≤n)
hiding (module ℕ)
import Data.Nat.Properties as ℕₚ
open import Data.Nat.Solver
open import Data.Product using (proj₁; proj₂; _,_)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
open import Data.Sign as Sign using () renaming (_*_ to _𝕊*_)
import Data.Sign.Properties as 𝕊ₚ
open import Data.Unit using (tt)
open import Function.Base using (_∘_; _$_; id)
open import Level using (0ℓ)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (yes; no)
import Relation.Nullary.Reflects as Reflects
open import Relation.Nullary.Negation using (contradiction)
import Relation.Nullary.Decidable as Dec
open import Algebra.Definitions {A = ℤ} _≡_
open import Algebra.Consequences.Propositional
open import Algebra.Structures {A = ℤ} _≡_
module ℤtoℕ = Morphism.Definitions ℤ ℕ _≡_
module ℕtoℤ = Morphism.Definitions ℕ ℤ _≡_
open +-*-Solver
+-injective : ∀ {m n} → + m ≡ + n → m ≡ n
+-injective refl = refl
-[1+-injective : ∀ {m n} → -[1+ m ] ≡ -[1+ n ] → m ≡ n
-[1+-injective refl = refl
+[1+-injective : ∀ {m n} → +[1+ m ] ≡ +[1+ n ] → m ≡ n
+[1+-injective refl = refl
infix 4 _≟_
_≟_ : Decidable {A = ℤ} _≡_
+ m ≟ + n = Dec.map′ (cong (+_)) +-injective (m ℕ.≟ n)
+ m ≟ -[1+ n ] = no λ()
-[1+ m ] ≟ + n = no λ()
-[1+ m ] ≟ -[1+ n ] = Dec.map′ (cong -[1+_]) -[1+-injective (m ℕ.≟ n)
≡-setoid : Setoid 0ℓ 0ℓ
≡-setoid = setoid ℤ
≡-decSetoid : DecSetoid 0ℓ 0ℓ
≡-decSetoid = decSetoid _≟_
drop‿+≤+ : ∀ {m n} → + m ≤ + n → m ℕ.≤ n
drop‿+≤+ (+≤+ m≤n) = m≤n
drop‿-≤- : ∀ {m n} → -[1+ m ] ≤ -[1+ n ] → n ℕ.≤ m
drop‿-≤- (-≤- n≤m) = n≤m
≤-reflexive : _≡_ ⇒ _≤_
≤-reflexive { -[1+ n ]} refl = -≤- ℕₚ.≤-refl
≤-reflexive {+ n} refl = +≤+ ℕₚ.≤-refl
≤-refl : Reflexive _≤_
≤-refl = ≤-reflexive refl
≤-trans : Transitive _≤_
≤-trans -≤+ (+≤+ n≤m) = -≤+
≤-trans (-≤- n≤m) -≤+ = -≤+
≤-trans (-≤- n≤m) (-≤- k≤n) = -≤- (ℕₚ.≤-trans k≤n n≤m)
≤-trans (+≤+ m≤n) (+≤+ n≤k) = +≤+ (ℕₚ.≤-trans m≤n n≤k)
≤-antisym : Antisymmetric _≡_ _≤_
≤-antisym (-≤- n≤m) (-≤- m≤n) = cong -[1+_] $ ℕₚ.≤-antisym m≤n n≤m
≤-antisym (+≤+ m≤n) (+≤+ n≤m) = cong (+_) $ ℕₚ.≤-antisym m≤n n≤m
≤-total : Total _≤_
≤-total (-[1+ m ]) (-[1+ n ]) = Sum.map -≤- -≤- (ℕₚ.≤-total n m)
≤-total (-[1+ m ]) (+ n ) = inj₁ -≤+
≤-total (+ m ) (-[1+ n ]) = inj₂ -≤+
≤-total (+ m ) (+ n ) = Sum.map +≤+ +≤+ (ℕₚ.≤-total m n)
infix 4 _≤?_
_≤?_ : Decidable _≤_
-[1+ m ] ≤? -[1+ n ] = Dec.map′ -≤- drop‿-≤- (n ℕ.≤? m)
-[1+ m ] ≤? + n = yes -≤+
+ m ≤? -[1+ n ] = no λ ()
+ m ≤? + n = Dec.map′ +≤+ drop‿+≤+ (m ℕ.≤? n)
≤-irrelevant : Irrelevant _≤_
≤-irrelevant -≤+ -≤+ = refl
≤-irrelevant (-≤- n≤m₁) (-≤- n≤m₂) = cong -≤- (ℕₚ.≤-irrelevant n≤m₁ n≤m₂)
≤-irrelevant (+≤+ n≤m₁) (+≤+ n≤m₂) = cong +≤+ (ℕₚ.≤-irrelevant n≤m₁ n≤m₂)
≤-isPreorder : IsPreorder _≡_ _≤_
≤-isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = ≤-reflexive
; trans = ≤-trans
}
≤-isTotalPreorder : IsTotalPreorder _≡_ _≤_
≤-isTotalPreorder = record
{ isPreorder = ≤-isPreorder
; total = ≤-total
}
≤-isPartialOrder : IsPartialOrder _≡_ _≤_
≤-isPartialOrder = record
{ isPreorder = ≤-isPreorder
; antisym = ≤-antisym
}
≤-isTotalOrder : IsTotalOrder _≡_ _≤_
≤-isTotalOrder = record
{ isPartialOrder = ≤-isPartialOrder
; total = ≤-total
}
≤-isDecTotalOrder : IsDecTotalOrder _≡_ _≤_
≤-isDecTotalOrder = record
{ isTotalOrder = ≤-isTotalOrder
; _≟_ = _≟_
; _≤?_ = _≤?_
}
≤-preorder : Preorder 0ℓ 0ℓ 0ℓ
≤-preorder = record
{ isPreorder = ≤-isPreorder
}
≤-totalPreorder : TotalPreorder 0ℓ 0ℓ 0ℓ
≤-totalPreorder = record
{ isTotalPreorder = ≤-isTotalPreorder
}
≤-poset : Poset 0ℓ 0ℓ 0ℓ
≤-poset = record
{ isPartialOrder = ≤-isPartialOrder
}
≤-totalOrder : TotalOrder 0ℓ 0ℓ 0ℓ
≤-totalOrder = record
{ isTotalOrder = ≤-isTotalOrder
}
≤-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ
≤-decTotalOrder = record
{ isDecTotalOrder = ≤-isDecTotalOrder
}
≤ᵇ⇒≤ : ∀ {i j} → T (i ≤ᵇ j) → i ≤ j
≤ᵇ⇒≤ {+ _} {+ _} i≤j = +≤+ (ℕₚ.≤ᵇ⇒≤ _ _ i≤j)
≤ᵇ⇒≤ { -[1+ _ ]} {+ _} i≤j = -≤+
≤ᵇ⇒≤ { -[1+ _ ]} { -[1+ _ ]} i≤j = -≤- (ℕₚ.≤ᵇ⇒≤ _ _ i≤j)
≤⇒≤ᵇ : ∀ {i j} → i ≤ j → T (i ≤ᵇ j)
≤⇒≤ᵇ (-≤- n≤m) = ℕₚ.≤⇒≤ᵇ n≤m
≤⇒≤ᵇ -≤+ = _
≤⇒≤ᵇ (+≤+ m≤n) = ℕₚ.≤⇒≤ᵇ m≤n
drop‿+<+ : ∀ {m n} → + m < + n → m ℕ.< n
drop‿+<+ (+<+ m<n) = m<n
drop‿-<- : ∀ {m n} → -[1+ m ] < -[1+ n ] → n ℕ.< m
drop‿-<- (-<- n<m) = n<m
+≮0 : ∀ {n} → + n ≮ +0
+≮0 (+<+ ())
+≮- : ∀ {m n} → + m ≮ -[1+ n ]
+≮- ()
<⇒≤ : _<_ ⇒ _≤_
<⇒≤ (-<- i<j) = -≤- (ℕₚ.<⇒≤ i<j)
<⇒≤ -<+ = -≤+
<⇒≤ (+<+ i<j) = +≤+ (ℕₚ.<⇒≤ i<j)
<⇒≢ : _<_ ⇒ _≢_
<⇒≢ (-<- n<m) refl = ℕₚ.<⇒≢ n<m refl
<⇒≢ (+<+ m<n) refl = ℕₚ.<⇒≢ m<n refl
<⇒≱ : _<_ ⇒ _≱_
<⇒≱ (-<- n<m) = ℕₚ.<⇒≱ n<m ∘ drop‿-≤-
<⇒≱ (+<+ m<n) = ℕₚ.<⇒≱ m<n ∘ drop‿+≤+
≤⇒≯ : _≤_ ⇒ _≯_
≤⇒≯ (-≤- n≤m) (-<- n<m) = ℕₚ.≤⇒≯ n≤m n<m
≤⇒≯ -≤+ = +≮-
≤⇒≯ (+≤+ m≤n) (+<+ m<n) = ℕₚ.≤⇒≯ m≤n m<n
≰⇒> : _≰_ ⇒ _>_
≰⇒> {+ n} {+_ n₁} i≰j = +<+ (ℕₚ.≰⇒> (i≰j ∘ +≤+))
≰⇒> {+ n} { -[1+_] n₁} i≰j = -<+
≰⇒> { -[1+_] n} {+_ n₁} i≰j = contradiction -≤+ i≰j
≰⇒> { -[1+_] n} { -[1+_] n₁} i≰j = -<- (ℕₚ.≰⇒> (i≰j ∘ -≤-))
≮⇒≥ : _≮_ ⇒ _≥_
≮⇒≥ {+ i} {+ j} i≮j = +≤+ (ℕₚ.≮⇒≥ (i≮j ∘ +<+))
≮⇒≥ {+ i} { -[1+_] j} i≮j = -≤+
≮⇒≥ { -[1+_] i} {+ j} i≮j = contradiction -<+ i≮j
≮⇒≥ { -[1+_] i} { -[1+_] j} i≮j = -≤- (ℕₚ.≮⇒≥ (i≮j ∘ -<-))
>⇒≰ : _>_ ⇒ _≰_
>⇒≰ = <⇒≱
≤∧≢⇒< : ∀ {x y} → x ≤ y → x ≢ y → x < y
≤∧≢⇒< (-≤- m≤n) x≢y = -<- (ℕₚ.≤∧≢⇒< m≤n (x≢y ∘ cong -[1+_] ∘ sym))
≤∧≢⇒< -≤+ x≢y = -<+
≤∧≢⇒< (+≤+ n≤m) x≢y = +<+ (ℕₚ.≤∧≢⇒< n≤m (x≢y ∘ cong (+_)))
≤∧≮⇒≡ : ∀ {x y} → x ≤ y → x ≮ y → x ≡ y
≤∧≮⇒≡ x≤y x≮y = ≤-antisym x≤y (≮⇒≥ x≮y)
<-irrefl : Irreflexive _≡_ _<_
<-irrefl { -[1+ n ]} refl = ℕₚ.<-irrefl refl ∘ drop‿-<-
<-irrefl { +0} refl (+<+ ())
<-irrefl { +[1+ n ]} refl = ℕₚ.<-irrefl refl ∘ drop‿+<+
<-asym : Asymmetric _<_
<-asym (-<- n<m) = ℕₚ.<-asym n<m ∘ drop‿-<-
<-asym (+<+ m<n) = ℕₚ.<-asym m<n ∘ drop‿+<+
≤-<-trans : Trans _≤_ _<_ _<_
≤-<-trans (-≤- n≤m) (-<- o<n) = -<- (ℕₚ.<-transˡ o<n n≤m)
≤-<-trans (-≤- n≤m) -<+ = -<+
≤-<-trans -≤+ (+<+ m<o) = -<+
≤-<-trans (+≤+ m≤n) (+<+ n<o) = +<+ (ℕₚ.<-transʳ m≤n n<o)
<-≤-trans : Trans _<_ _≤_ _<_
<-≤-trans (-<- n<m) (-≤- o≤n) = -<- (ℕₚ.<-transʳ o≤n n<m)
<-≤-trans (-<- n<m) -≤+ = -<+
<-≤-trans -<+ (+≤+ m≤n) = -<+
<-≤-trans (+<+ m<n) (+≤+ n≤o) = +<+ (ℕₚ.<-transˡ m<n n≤o)
<-trans : Transitive _<_
<-trans m<n n<p = ≤-<-trans (<⇒≤ m<n) n<p
<-cmp : Trichotomous _≡_ _<_
<-cmp +0 +0 = tri≈ +≮0 refl +≮0
<-cmp +0 +[1+ n ] = tri< (+<+ (s≤s z≤n)) (λ()) +≮0
<-cmp +[1+ n ] +0 = tri> +≮0 (λ()) (+<+ (s≤s z≤n))
<-cmp (+ m) -[1+ n ] = tri> +≮- (λ()) -<+
<-cmp -[1+ m ] (+ n) = tri< -<+ (λ()) +≮-
<-cmp -[1+ m ] -[1+ n ] with ℕₚ.<-cmp m n
... | tri< m<n m≢n n≯m = tri> (n≯m ∘ drop‿-<-) (m≢n ∘ -[1+-injective) (-<- m<n)
... | tri≈ m≮n m≡n n≯m = tri≈ (n≯m ∘ drop‿-<-) (cong -[1+_] m≡n) (m≮n ∘ drop‿-<-)
... | tri> m≮n m≢n n>m = tri< (-<- n>m) (m≢n ∘ -[1+-injective) (m≮n ∘ drop‿-<-)
<-cmp +[1+ m ] +[1+ n ] with ℕₚ.<-cmp m n
... | tri< m<n m≢n n≯m = tri< (+<+ (s≤s m<n)) (m≢n ∘ +[1+-injective) (n≯m ∘ ℕₚ.≤-pred ∘ drop‿+<+)
... | tri≈ m≮n m≡n n≯m = tri≈ (m≮n ∘ ℕₚ.≤-pred ∘ drop‿+<+) (cong (+_ ∘ suc) m≡n) (n≯m ∘ ℕₚ.≤-pred ∘ drop‿+<+)
... | tri> m≮n m≢n n>m = tri> (m≮n ∘ ℕₚ.≤-pred ∘ drop‿+<+) (m≢n ∘ +[1+-injective) (+<+ (s≤s n>m))
infix 4 _<?_
_<?_ : Decidable _<_
-[1+ m ] <? -[1+ n ] = Dec.map′ -<- drop‿-<- (n ℕ.<? m)
-[1+ m ] <? + n = yes -<+
+ m <? -[1+ n ] = no λ()
+ m <? + n = Dec.map′ +<+ drop‿+<+ (m ℕ.<? n)
<-irrelevant : Irrelevant _<_
<-irrelevant (-<- n<m₁) (-<- n<m₂) = cong -<- (ℕₚ.<-irrelevant n<m₁ n<m₂)
<-irrelevant -<+ -<+ = refl
<-irrelevant (+<+ m<n₁) (+<+ m<n₂) = cong +<+ (ℕₚ.<-irrelevant m<n₁ m<n₂)
<-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<_
<-isStrictPartialOrder = record
{ isEquivalence = isEquivalence
; irrefl = <-irrefl
; trans = <-trans
; <-resp-≈ = subst (_ <_) , subst (_< _)
}
<-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_
<-isStrictTotalOrder = record
{ isEquivalence = isEquivalence
; trans = <-trans
; compare = <-cmp
}
<-strictPartialOrder : StrictPartialOrder 0ℓ 0ℓ 0ℓ
<-strictPartialOrder = record
{ isStrictPartialOrder = <-isStrictPartialOrder
}
<-strictTotalOrder : StrictTotalOrder 0ℓ 0ℓ 0ℓ
<-strictTotalOrder = record
{ isStrictTotalOrder = <-isStrictTotalOrder
}
n≮n : ∀ {n} → n ≮ n
n≮n {n} = <-irrefl refl
>-irrefl : Irreflexive _≡_ _>_
>-irrefl = <-irrefl ∘ sym
module ≤-Reasoning where
open import Relation.Binary.Reasoning.Base.Triple
≤-isPreorder
<-trans
(resp₂ _<_)
<⇒≤
<-≤-trans
≤-<-trans
public
hiding (step-≈; step-≈˘)
positive⁻¹ : ∀ {n} → Positive n → n > 0ℤ
positive⁻¹ {+[1+ n ]} _ = +<+ (s≤s z≤n)
nonNegative⁻¹ : ∀ {n} → NonNegative n → n ≥ 0ℤ
nonNegative⁻¹ {+ n} _ = +≤+ z≤n
negative⁻¹ : ∀ {n} → Negative n → n < 0ℤ
negative⁻¹ { -[1+ n ]} _ = -<+
nonPositive⁻¹ : ∀ {q} → NonPositive q → q ≤ 0ℤ
nonPositive⁻¹ {+ zero} _ = +≤+ z≤n
nonPositive⁻¹ { -[1+ n ]} _ = -≤+
negative<positive : ∀ {m n} → Negative m → Positive n → m < n
negative<positive m<0 n>0 = <-trans (negative⁻¹ m<0) (positive⁻¹ n>0)
neg-involutive : ∀ n → - - n ≡ n
neg-involutive -[1+ n ] = refl
neg-involutive +0 = refl
neg-involutive +[1+ n ] = refl
neg-injective : ∀ {m n} → - m ≡ - n → m ≡ n
neg-injective {m} {n} -m≡-n = begin
m ≡⟨ sym (neg-involutive m) ⟩
- - m ≡⟨ cong -_ -m≡-n ⟩
- - n ≡⟨ neg-involutive n ⟩
n ∎ where open ≡-Reasoning
neg-≤-pos : ∀ {m n} → - (+ m) ≤ + n
neg-≤-pos {zero} = +≤+ z≤n
neg-≤-pos {suc m} = -≤+
neg-mono-< : -_ Preserves _<_ ⟶ _>_
neg-mono-< { -[1+ _ ]} { -[1+ _ ]} (-<- n<m) = +<+ (s≤s n<m)
neg-mono-< { -[1+ _ ]} { +0} -<+ = +<+ (s≤s z≤n)
neg-mono-< { -[1+ _ ]} { +[1+ n ]} -<+ = -<+
neg-mono-< { +0} { +[1+ n ]} (+<+ _) = -<+
neg-mono-< { +[1+ m ]} { +[1+ n ]} (+<+ m<n) = -<- (ℕₚ.≤-pred m<n)
neg-cancel-< : ∀ {m n} → - m < - n → m > n
neg-cancel-< { +[1+ m ]} { +[1+ n ]} (-<- n<m) = +<+ (s≤s n<m)
neg-cancel-< { +[1+ m ]} { +0} -<+ = +<+ (s≤s z≤n)
neg-cancel-< { +[1+ m ]} { -[1+ n ]} -<+ = -<+
neg-cancel-< { +0} { +0} (+<+ ())
neg-cancel-< { +0} { -[1+ n ]} _ = -<+
neg-cancel-< { -[1+ m ]} { +0} (+<+ ())
neg-cancel-< { -[1+ m ]} { -[1+ n ]} (+<+ (s≤s m<n)) = -<- m<n
∣n∣≡0⇒n≡0 : ∀ {n} → ∣ n ∣ ≡ 0 → n ≡ + 0
∣n∣≡0⇒n≡0 {+0} refl = refl
∣-n∣≡∣n∣ : ∀ n → ∣ - n ∣ ≡ ∣ n ∣
∣-n∣≡∣n∣ -[1+ n ] = refl
∣-n∣≡∣n∣ +0 = refl
∣-n∣≡∣n∣ +[1+ n ] = refl
0≤n⇒+∣n∣≡n : ∀ {n} → + 0 ≤ n → + ∣ n ∣ ≡ n
0≤n⇒+∣n∣≡n (+≤+ 0≤n) = refl
+∣n∣≡n⇒0≤n : ∀ {n} → + ∣ n ∣ ≡ n → + 0 ≤ n
+∣n∣≡n⇒0≤n {+ n} _ = +≤+ z≤n
+∣n∣≡n⊎+∣n∣≡-n : ∀ n → + ∣ n ∣ ≡ n ⊎ + ∣ n ∣ ≡ - n
+∣n∣≡n⊎+∣n∣≡-n (+ n) = inj₁ refl
+∣n∣≡n⊎+∣n∣≡-n (-[1+ n ]) = inj₂ refl
∣m⊝n∣≤m⊔n : ∀ m n → ∣ m ⊖ n ∣ ℕ.≤ m ℕ.⊔ n
∣m⊝n∣≤m⊔n m n with m ℕ.<ᵇ n
... | true = begin
∣ - + (n ℕ.∸ m) ∣ ≡⟨ ∣-n∣≡∣n∣ (+ (n ℕ.∸ m)) ⟩
∣ + (n ℕ.∸ m) ∣ ≡⟨⟩
n ℕ.∸ m ≤⟨ ℕₚ.n∸m≤n m n ⟩
n ≤⟨ ℕₚ.n≤m⊔n m n ⟩
m ℕ.⊔ n ∎
where open ℕₚ.≤-Reasoning
... | false = begin
∣ + (m ℕ.∸ n) ∣ ≡⟨⟩
m ℕ.∸ n ≤⟨ ℕₚ.n∸m≤n n m ⟩
m ≤⟨ ℕₚ.m≤m⊔n m n ⟩
m ℕ.⊔ n ∎
where open ℕₚ.≤-Reasoning
∣m+n∣≤∣m∣+∣n∣ : ∀ m n → ∣ m + n ∣ ℕ.≤ ∣ m ∣ ℕ.+ ∣ n ∣
∣m+n∣≤∣m∣+∣n∣ +[1+ m ] (+ n) = ℕₚ.≤-refl
∣m+n∣≤∣m∣+∣n∣ +[1+ m ] -[1+ n ] = begin
∣ suc m ⊖ suc n ∣ ≤⟨ ∣m⊝n∣≤m⊔n (suc m) (suc n) ⟩
suc m ℕ.⊔ suc n ≤⟨ ℕₚ.m⊔n≤m+n (suc m) (suc n) ⟩
suc m ℕ.+ suc n ∎
where open ℕₚ.≤-Reasoning
∣m+n∣≤∣m∣+∣n∣ (+ zero) (+ n) = ℕₚ.≤-refl
∣m+n∣≤∣m∣+∣n∣ (+ zero) -[1+ n ] = ℕₚ.≤-refl
∣m+n∣≤∣m∣+∣n∣ (-[1+ m ]) (+ n) = begin
∣ n ⊖ suc m ∣ ≤⟨ ∣m⊝n∣≤m⊔n n (suc m) ⟩
n ℕ.⊔ suc m ≤⟨ ℕₚ.m⊔n≤m+n n (suc m) ⟩
n ℕ.+ suc m ≡⟨ ℕₚ.+-comm n (suc m) ⟩
suc m ℕ.+ n ∎
where open ℕₚ.≤-Reasoning
∣m+n∣≤∣m∣+∣n∣ (-[1+ m ]) (-[1+ n ]) rewrite ℕₚ.+-suc (suc m) n = ℕₚ.≤-refl
∣m-n∣≤∣m∣+∣n∣ : ∀ m n → ∣ m - n ∣ ℕ.≤ ∣ m ∣ ℕ.+ ∣ n ∣
∣m-n∣≤∣m∣+∣n∣ m n = begin
∣ m - n ∣ ≤⟨ ∣m+n∣≤∣m∣+∣n∣ m (- n) ⟩
∣ m ∣ ℕ.+ ∣ - n ∣ ≡⟨ cong (∣ m ∣ ℕ.+_) (∣-n∣≡∣n∣ n) ⟩
∣ m ∣ ℕ.+ ∣ n ∣ ∎
where open ℕₚ.≤-Reasoning
◃-inverse : ∀ i → sign i ◃ ∣ i ∣ ≡ i
◃-inverse -[1+ n ] = refl
◃-inverse +0 = refl
◃-inverse +[1+ n ] = refl
◃-cong : ∀ {i j} → sign i ≡ sign j → ∣ i ∣ ≡ ∣ j ∣ → i ≡ j
◃-cong {i} {j} sign-≡ abs-≡ = begin
i ≡⟨ sym $ ◃-inverse i ⟩
sign i ◃ ∣ i ∣ ≡⟨ cong₂ _◃_ sign-≡ abs-≡ ⟩
sign j ◃ ∣ j ∣ ≡⟨ ◃-inverse j ⟩
j ∎ where open ≡-Reasoning
+◃n≡+n : ∀ n → Sign.+ ◃ n ≡ + n
+◃n≡+n zero = refl
+◃n≡+n (suc _) = refl
-◃n≡-n : ∀ n → Sign.- ◃ n ≡ - + n
-◃n≡-n zero = refl
-◃n≡-n (suc _) = refl
sign-◃ : ∀ s n → sign (s ◃ suc n) ≡ s
sign-◃ Sign.- _ = refl
sign-◃ Sign.+ _ = refl
abs-◃ : ∀ s n → ∣ s ◃ n ∣ ≡ n
abs-◃ _ zero = refl
abs-◃ Sign.- (suc n) = refl
abs-◃ Sign.+ (suc n) = refl
signₙ◃∣n∣≡n : ∀ n → sign n ◃ ∣ n ∣ ≡ n
signₙ◃∣n∣≡n (+ n) = +◃n≡+n n
signₙ◃∣n∣≡n -[1+ n ] = refl
sign-cong : ∀ {s₁ s₂ n₁ n₂} →
s₁ ◃ suc n₁ ≡ s₂ ◃ suc n₂ → s₁ ≡ s₂
sign-cong {s₁} {s₂} {n₁} {n₂} eq = begin
s₁ ≡⟨ sym $ sign-◃ s₁ n₁ ⟩
sign (s₁ ◃ suc n₁) ≡⟨ cong sign eq ⟩
sign (s₂ ◃ suc n₂) ≡⟨ sign-◃ s₂ n₂ ⟩
s₂ ∎ where open ≡-Reasoning
abs-cong : ∀ {s₁ s₂ n₁ n₂} → s₁ ◃ n₁ ≡ s₂ ◃ n₂ → n₁ ≡ n₂
abs-cong {s₁} {s₂} {n₁} {n₂} eq = begin
n₁ ≡⟨ sym $ abs-◃ s₁ n₁ ⟩
∣ s₁ ◃ n₁ ∣ ≡⟨ cong ∣_∣ eq ⟩
∣ s₂ ◃ n₂ ∣ ≡⟨ abs-◃ s₂ n₂ ⟩
n₂ ∎ where open ≡-Reasoning
∣s◃m∣*∣t◃n∣≡m*n : ∀ s t m n → ∣ s ◃ m ∣ ℕ.* ∣ t ◃ n ∣ ≡ m ℕ.* n
∣s◃m∣*∣t◃n∣≡m*n s t m n = cong₂ ℕ._*_ (abs-◃ s m) (abs-◃ t n)
◃-≡ : ∀ {m n} → sign m ≡ sign n → ∣ m ∣ ≡ ∣ n ∣ → m ≡ n
◃-≡ {+ m} {+ n } ≡-sign refl = refl
◃-≡ { -[1+ m ]} { -[1+ n ]} ≡-sign refl = refl
+◃-mono-< : ∀ {m n} → m ℕ.< n → Sign.+ ◃ m < Sign.+ ◃ n
+◃-mono-< {zero} {suc n} m<n = +<+ m<n
+◃-mono-< {suc m} {suc n} m<n = +<+ m<n
+◃-cancel-< : ∀ {m n} → Sign.+ ◃ m < Sign.+ ◃ n → m ℕ.< n
+◃-cancel-< {zero} {zero} (+<+ ())
+◃-cancel-< {suc m} {zero} (+<+ ())
+◃-cancel-< {zero} {suc n} (+<+ m<n) = m<n
+◃-cancel-< {suc m} {suc n} (+<+ m<n) = m<n
neg◃-cancel-< : ∀ {m n} → Sign.- ◃ m < Sign.- ◃ n → n ℕ.< m
neg◃-cancel-< {zero} {suc n} ()
neg◃-cancel-< {zero} {zero} (+<+ ())
neg◃-cancel-< {suc m} {zero} -<+ = s≤s z≤n
neg◃-cancel-< {suc m} {suc n} (-<- n<m) = s≤s n<m
-◃<+◃ : ∀ m n → Sign.- ◃ (suc m) < Sign.+ ◃ n
-◃<+◃ m zero = -<+
-◃<+◃ m (suc n) = -<+
+◃≮-◃ : ∀ {m n} → Sign.+ ◃ m ≮ Sign.- ◃ n
+◃≮-◃ {zero} {zero} (+<+ ())
+◃≮-◃ {suc m} {zero} (+<+ ())
n⊖n≡0 : ∀ n → n ⊖ n ≡ + 0
n⊖n≡0 n with n ℕ.<ᵇ n
... | true = cong (-_ ∘ +_) (ℕₚ.n∸n≡0 n)
... | false = cong +_ (ℕₚ.n∸n≡0 n)
[1+m]⊖[1+n]≡m⊖n : ∀ m n → suc m ⊖ suc n ≡ m ⊖ n
[1+m]⊖[1+n]≡m⊖n m n with m ℕ.<ᵇ n
... | true = refl
... | false = refl
⊖-swap : ∀ m n → m ⊖ n ≡ - (n ⊖ m)
⊖-swap zero zero = refl
⊖-swap zero (suc m) = refl
⊖-swap (suc m) zero = refl
⊖-swap (suc m) (suc n) = begin
suc m ⊖ suc n ≡⟨ [1+m]⊖[1+n]≡m⊖n m n ⟩
m ⊖ n ≡⟨ ⊖-swap m n ⟩
- (n ⊖ m) ≡˘⟨ cong -_ ([1+m]⊖[1+n]≡m⊖n n m) ⟩
- (suc n ⊖ suc m) ∎ where open ≡-Reasoning
⊖-≥ : ∀ {m n} → m ℕ.≥ n → m ⊖ n ≡ + (m ∸ n)
⊖-≥ {m} {n} p with m ℕ.<ᵇ n | Reflects.invert (ℕₚ.<ᵇ-reflects-< m n)
... | true | q = ⊥-elim (ℕₚ.<-irrefl refl (ℕₚ.<-transʳ p q))
... | false | q = refl
⊖-≤ : ∀ {m n} → m ℕ.≤ n → m ⊖ n ≡ - + (n ∸ m)
⊖-≤ {m} {n} p with m ℕ.<ᵇ n | Reflects.invert (ℕₚ.<ᵇ-reflects-< m n)
... | true | q = refl
... | false | q rewrite ℕₚ.≤-antisym p (ℕₚ.≮⇒≥ q) | ℕₚ.n∸n≡0 n = refl
⊖-< : ∀ {m n} → m ℕ.< n → m ⊖ n ≡ - + (n ∸ m)
⊖-< = ⊖-≤ ∘ ℕₚ.<⇒≤
⊖-≰ : ∀ {m n} → n ℕ.≰ m → m ⊖ n ≡ - + (n ∸ m)
⊖-≰ = ⊖-< ∘ ℕₚ.≰⇒>
∣⊖∣-< : ∀ {m n} → m ℕ.< n → ∣ m ⊖ n ∣ ≡ n ∸ m
∣⊖∣-< {m} {n} p = begin
∣ m ⊖ n ∣ ≡⟨ cong ∣_∣ (⊖-< p) ⟩
∣ - (+ (n ∸ m)) ∣ ≡⟨ ∣-n∣≡∣n∣ (+ (n ∸ m)) ⟩
∣ + (n ∸ m) ∣ ≡⟨⟩
n ∸ m ∎ where open ≡-Reasoning
∣⊖∣-≰ : ∀ {m n} → n ℕ.≰ m → ∣ m ⊖ n ∣ ≡ n ∸ m
∣⊖∣-≰ = ∣⊖∣-< ∘ ℕₚ.≰⇒>
-m+n≡n⊖m : ∀ m n → - (+ m) + + n ≡ n ⊖ m
-m+n≡n⊖m zero n = refl
-m+n≡n⊖m (suc m) n = refl
m-n≡m⊖n : ∀ m n → + m + (- + n) ≡ m ⊖ n
m-n≡m⊖n zero zero = refl
m-n≡m⊖n zero (suc n) = refl
m-n≡m⊖n (suc m) zero = cong +[1+_] (ℕₚ.+-identityʳ m)
m-n≡m⊖n (suc m) (suc n) = refl
-[n⊖m]≡-m+n : ∀ m n → - (m ⊖ n) ≡ (- (+ m)) + (+ n)
-[n⊖m]≡-m+n m n with m ℕ.<ᵇ n | Reflects.invert (ℕₚ.<ᵇ-reflects-< m n)
... | true | p = begin
- (- (+ (n ∸ m))) ≡⟨ neg-involutive (+ (n ∸ m)) ⟩
+ (n ∸ m) ≡˘⟨ ⊖-≥ (ℕₚ.≤-trans (ℕₚ.m≤n+m m 1) p) ⟩
n ⊖ m ≡˘⟨ -m+n≡n⊖m m n ⟩
- (+ m) + + n ∎ where open ≡-Reasoning
... | false | p = begin
- (+ (m ∸ n)) ≡˘⟨ ⊖-≤ (ℕₚ.≮⇒≥ p) ⟩
n ⊖ m ≡˘⟨ -m+n≡n⊖m m n ⟩
- (+ m) + + n ∎ where open ≡-Reasoning
∣m⊖n∣≡∣n⊖m∣ : ∀ x y → ∣ x ⊖ y ∣ ≡ ∣ y ⊖ x ∣
∣m⊖n∣≡∣n⊖m∣ x y = begin
∣ x ⊖ y ∣ ≡⟨ cong ∣_∣ (⊖-swap x y) ⟩
∣ - (y ⊖ x) ∣ ≡⟨ ∣-n∣≡∣n∣ (y ⊖ x) ⟩
∣ y ⊖ x ∣ ∎ where open ≡-Reasoning
+-cancelˡ-⊖ : ∀ a b c → (a ℕ.+ b) ⊖ (a ℕ.+ c) ≡ b ⊖ c
+-cancelˡ-⊖ zero b c = refl
+-cancelˡ-⊖ (suc a) b c = begin
suc (a ℕ.+ b) ⊖ suc (a ℕ.+ c) ≡⟨ [1+m]⊖[1+n]≡m⊖n (a ℕ.+ b) (a ℕ.+ c) ⟩
a ℕ.+ b ⊖ (a ℕ.+ c) ≡⟨ +-cancelˡ-⊖ a b c ⟩
b ⊖ c ∎ where open ≡-Reasoning
m⊖n≤m : ∀ m n → m ⊖ n ≤ + m
m⊖n≤m m zero = ≤-refl
m⊖n≤m zero (suc n) = -≤+
m⊖n≤m (suc m) (suc n) = begin
suc m ⊖ suc n ≡⟨ [1+m]⊖[1+n]≡m⊖n m n ⟩
m ⊖ n ≤⟨ m⊖n≤m m n ⟩
+ m ≤⟨ +≤+ (ℕₚ.n≤1+n m) ⟩
+[1+ m ] ∎ where open ≤-Reasoning
m⊖n<1+m : ∀ m n → m ⊖ n < +[1+ m ]
m⊖n<1+m m n = ≤-<-trans (m⊖n≤m m n) (+<+ (ℕₚ.m<n+m m (s≤s z≤n)))
m⊖1+n<m : ∀ m n → m ⊖ suc n < + m
m⊖1+n<m zero n = -<+
m⊖1+n<m (suc m) n = begin-strict
suc m ⊖ suc n ≡⟨ [1+m]⊖[1+n]≡m⊖n m n ⟩
m ⊖ n <⟨ m⊖n<1+m m n ⟩
+[1+ m ] ∎ where open ≤-Reasoning
-1+m<n⊖m : ∀ m n → -[1+ m ] < n ⊖ m
-1+m<n⊖m zero n = -<+
-1+m<n⊖m (suc m) zero = -<- ℕₚ.≤-refl
-1+m<n⊖m (suc m) (suc n) = begin-strict
-[1+ suc m ] <⟨ -<- ℕₚ.≤-refl ⟩
-[1+ m ] <⟨ -1+m<n⊖m m n ⟩
n ⊖ m ≡˘⟨ [1+m]⊖[1+n]≡m⊖n n m ⟩
suc n ⊖ suc m ∎ where open ≤-Reasoning
-[1+m]≤n⊖m+1 : ∀ m n → -[1+ m ] ≤ n ⊖ suc m
-[1+m]≤n⊖m+1 m zero = ≤-refl
-[1+m]≤n⊖m+1 m (suc n) = begin
-[1+ m ] ≤⟨ <⇒≤ (-1+m<n⊖m m n) ⟩
n ⊖ m ≡˘⟨ [1+m]⊖[1+n]≡m⊖n n m ⟩
suc n ⊖ suc m ∎ where open ≤-Reasoning
-1+m≤n⊖m : ∀ m n → -[1+ m ] ≤ n ⊖ m
-1+m≤n⊖m m n = <⇒≤ (-1+m<n⊖m m n)
0⊖m≤+ : ∀ m {n} → 0 ⊖ m ≤ + n
0⊖m≤+ zero = +≤+ z≤n
0⊖m≤+ (suc m) = -≤+
sign-⊖-< : ∀ {m n} → m ℕ.< n → sign (m ⊖ n) ≡ Sign.-
sign-⊖-< {zero} (ℕ.s≤s z≤n) = refl
sign-⊖-< {suc m} {suc n} (ℕ.s≤s m<n) = begin
sign (suc m ⊖ suc n) ≡⟨ cong sign ([1+m]⊖[1+n]≡m⊖n m n) ⟩
sign (m ⊖ n) ≡⟨ sign-⊖-< m<n ⟩
Sign.- ∎ where open ≡-Reasoning
sign-⊖-≰ : ∀ {m n} → n ℕ.≰ m → sign (m ⊖ n) ≡ Sign.-
sign-⊖-≰ = sign-⊖-< ∘ ℕₚ.≰⇒>
⊖-monoʳ-≥-≤ : ∀ p → (p ⊖_) Preserves ℕ._≥_ ⟶ _≤_
⊖-monoʳ-≥-≤ zero (z≤n {n}) = 0⊖m≤+ n
⊖-monoʳ-≥-≤ zero (s≤s m≤n) = -≤- m≤n
⊖-monoʳ-≥-≤ (suc p) (z≤n {zero}) = ≤-refl
⊖-monoʳ-≥-≤ (suc p) (z≤n {suc n}) = begin
suc p ⊖ suc n ≡⟨ [1+m]⊖[1+n]≡m⊖n p n ⟩
p ⊖ n ≤⟨ <⇒≤ (m⊖n<1+m p n) ⟩
+[1+ p ] ∎ where open ≤-Reasoning
⊖-monoʳ-≥-≤ (suc p) {suc m} {suc n} (s≤s m≤n) = begin
suc p ⊖ suc m ≡⟨ [1+m]⊖[1+n]≡m⊖n p m ⟩
p ⊖ m ≤⟨ ⊖-monoʳ-≥-≤ p m≤n ⟩
p ⊖ n ≡˘⟨ [1+m]⊖[1+n]≡m⊖n p n ⟩
suc p ⊖ suc n ∎ where open ≤-Reasoning
⊖-monoˡ-≤ : ∀ p → (_⊖ p) Preserves ℕ._≤_ ⟶ _≤_
⊖-monoˡ-≤ zero m≤n = +≤+ m≤n
⊖-monoˡ-≤ (suc p) (z≤n {0}) = ≤-refl
⊖-monoˡ-≤ (suc p) (z≤n {(suc m)}) = begin
zero ⊖ suc p ≤⟨ ⊖-monoʳ-≥-≤ 0 (ℕₚ.n≤1+n p) ⟩
zero ⊖ p ≤⟨ ⊖-monoˡ-≤ p z≤n ⟩
m ⊖ p ≡˘⟨ [1+m]⊖[1+n]≡m⊖n m p ⟩
suc m ⊖ suc p ∎ where open ≤-Reasoning
⊖-monoˡ-≤ (suc p) {suc m} {suc n} (s≤s m≤n) = begin
suc m ⊖ suc p ≡⟨ [1+m]⊖[1+n]≡m⊖n m p ⟩
m ⊖ p ≤⟨ ⊖-monoˡ-≤ p m≤n ⟩
n ⊖ p ≡˘⟨ [1+m]⊖[1+n]≡m⊖n n p ⟩
suc n ⊖ suc p ∎ where open ≤-Reasoning
⊖-monoʳ->-< : ∀ p → (p ⊖_) Preserves ℕ._>_ ⟶ _<_
⊖-monoʳ->-< zero {_} (s≤s z≤n) = -<+
⊖-monoʳ->-< zero {_} (s≤s (s≤s m≤n)) = -<- (s≤s m≤n)
⊖-monoʳ->-< (suc p) {suc m} (s≤s z≤n) = begin-strict
suc p ⊖ suc m ≡⟨ [1+m]⊖[1+n]≡m⊖n p m ⟩
p ⊖ m <⟨ m⊖n<1+m p m ⟩
+[1+ p ] ∎ where open ≤-Reasoning
⊖-monoʳ->-< (suc p) {suc m} {suc n} (s≤s (s≤s m≤n)) = begin-strict
suc p ⊖ suc m ≡⟨ [1+m]⊖[1+n]≡m⊖n p m ⟩
p ⊖ m <⟨ ⊖-monoʳ->-< p (s≤s m≤n) ⟩
p ⊖ n ≡˘⟨ [1+m]⊖[1+n]≡m⊖n p n ⟩
suc p ⊖ suc n ∎ where open ≤-Reasoning
⊖-monoˡ-< : ∀ p → (_⊖ p) Preserves ℕ._<_ ⟶ _<_
⊖-monoˡ-< zero m<n = +<+ m<n
⊖-monoˡ-< (suc p) (s≤s (z≤n {n})) = begin-strict
-[1+ p ] <⟨ -1+m<n⊖m p _ ⟩
n ⊖ p ≡˘⟨ [1+m]⊖[1+n]≡m⊖n n p ⟩
suc n ⊖ suc p ∎ where open ≤-Reasoning
⊖-monoˡ-< (suc p) {suc m} {suc (suc n)} (s≤s (s≤s m<n)) = begin-strict
suc m ⊖ suc p ≡⟨ [1+m]⊖[1+n]≡m⊖n m p ⟩
m ⊖ p <⟨ ⊖-monoˡ-< p (s≤s m<n) ⟩
suc n ⊖ p ≡˘⟨ [1+m]⊖[1+n]≡m⊖n (suc n) p ⟩
suc (suc n) ⊖ suc p ∎ where open ≤-Reasoning
+-comm : Commutative _+_
+-comm -[1+ a ] -[1+ b ] = cong (-[1+_] ∘ suc) (ℕₚ.+-comm a b)
+-comm (+ a ) (+ b ) = cong +_ (ℕₚ.+-comm a b)
+-comm -[1+ _ ] (+ _ ) = refl
+-comm (+ _ ) -[1+ _ ] = refl
+-identityˡ : LeftIdentity +0 _+_
+-identityˡ -[1+ _ ] = refl
+-identityˡ (+ _ ) = refl
+-identityʳ : RightIdentity +0 _+_
+-identityʳ = comm+idˡ⇒idʳ +-comm +-identityˡ
+-identity : Identity +0 _+_
+-identity = +-identityˡ , +-identityʳ
distribˡ-⊖-+-pos : ∀ a b c → b ⊖ c + + a ≡ b ℕ.+ a ⊖ c
distribˡ-⊖-+-pos _ zero zero = refl
distribˡ-⊖-+-pos _ zero (suc _) = refl
distribˡ-⊖-+-pos _ (suc _) zero = refl
distribˡ-⊖-+-pos a (suc b) (suc c) = begin
suc b ⊖ suc c + + a ≡⟨ cong (_+ + a) ([1+m]⊖[1+n]≡m⊖n b c) ⟩
b ⊖ c + + a ≡⟨ distribˡ-⊖-+-pos a b c ⟩
b ℕ.+ a ⊖ c ≡˘⟨ [1+m]⊖[1+n]≡m⊖n (b ℕ.+ a) c ⟩
suc (b ℕ.+ a) ⊖ suc c ∎ where open ≡-Reasoning
distribˡ-⊖-+-neg : ∀ a b c → b ⊖ c + -[1+ a ] ≡ b ⊖ (suc c ℕ.+ a)
distribˡ-⊖-+-neg _ zero zero = refl
distribˡ-⊖-+-neg _ zero (suc _) = refl
distribˡ-⊖-+-neg _ (suc _) zero = refl
distribˡ-⊖-+-neg a (suc b) (suc c) = begin
suc b ⊖ suc c + -[1+ a ] ≡⟨ cong (_+ -[1+ a ]) ([1+m]⊖[1+n]≡m⊖n b c) ⟩
b ⊖ c + -[1+ a ] ≡⟨ distribˡ-⊖-+-neg a b c ⟩
b ⊖ (suc c ℕ.+ a) ≡˘⟨ [1+m]⊖[1+n]≡m⊖n b (suc c ℕ.+ a) ⟩
suc b ⊖ (suc (suc c) ℕ.+ a) ∎ where open ≡-Reasoning
distribʳ-⊖-+-pos : ∀ a b c → + a + (b ⊖ c) ≡ a ℕ.+ b ⊖ c
distribʳ-⊖-+-pos a b c = begin
+ a + (b ⊖ c) ≡⟨ +-comm (+ a) (b ⊖ c) ⟩
(b ⊖ c) + + a ≡⟨ distribˡ-⊖-+-pos a b c ⟩
b ℕ.+ a ⊖ c ≡⟨ cong (_⊖ c) (ℕₚ.+-comm b a) ⟩
a ℕ.+ b ⊖ c ∎ where open ≡-Reasoning
distribʳ-⊖-+-neg : ∀ a b c → -[1+ a ] + (b ⊖ c) ≡ b ⊖ (suc a ℕ.+ c)
distribʳ-⊖-+-neg a b c = begin
-[1+ a ] + (b ⊖ c) ≡⟨ +-comm -[1+ a ] (b ⊖ c) ⟩
(b ⊖ c) + -[1+ a ] ≡⟨ distribˡ-⊖-+-neg a b c ⟩
b ⊖ suc (c ℕ.+ a) ≡⟨ cong (λ x → b ⊖ suc x) (ℕₚ.+-comm c a) ⟩
b ⊖ suc (a ℕ.+ c) ∎ where open ≡-Reasoning
+-assoc : Associative _+_
+-assoc +0 y z rewrite +-identityˡ y | +-identityˡ (y + z) = refl
+-assoc x +0 z rewrite +-identityʳ x | +-identityˡ z = refl
+-assoc x y +0 rewrite +-identityʳ (x + y) | +-identityʳ y = refl
+-assoc -[1+ a ] -[1+ b ] +[1+ c ] = begin
suc c ⊖ suc (suc (a ℕ.+ b)) ≡⟨ [1+m]⊖[1+n]≡m⊖n c (suc a ℕ.+ b) ⟩
c ⊖ (suc a ℕ.+ b) ≡˘⟨ distribʳ-⊖-+-neg a c b ⟩
-[1+ a ] + (c ⊖ b) ≡˘⟨ cong (λ z → -[1+ a ] + z) ([1+m]⊖[1+n]≡m⊖n c b) ⟩
-[1+ a ] + (suc c ⊖ suc b) ∎ where open ≡-Reasoning
+-assoc -[1+ a ] +[1+ b ] +[1+ c ] = begin
suc b ⊖ suc a + +[1+ c ] ≡⟨ cong (_+ +[1+ c ]) ([1+m]⊖[1+n]≡m⊖n b a) ⟩
(b ⊖ a) + +[1+ c ] ≡⟨ distribˡ-⊖-+-pos (suc c) b a ⟩
b ℕ.+ suc c ⊖ a ≡˘⟨ [1+m]⊖[1+n]≡m⊖n (b ℕ.+ suc c) a ⟩
suc (b ℕ.+ suc c) ⊖ suc a ∎ where open ≡-Reasoning
+-assoc +[1+ a ] -[1+ b ] -[1+ c ] = begin
(suc a ⊖ suc b) + -[1+ c ] ≡⟨ cong (_+ -[1+ c ]) ([1+m]⊖[1+n]≡m⊖n a b) ⟩
(a ⊖ b) + -[1+ c ] ≡⟨ distribˡ-⊖-+-neg c a b ⟩
a ⊖ suc (b ℕ.+ c) ≡˘⟨ [1+m]⊖[1+n]≡m⊖n a (suc b ℕ.+ c) ⟩
suc a ⊖ suc (suc (b ℕ.+ c)) ∎ where open ≡-Reasoning
+-assoc +[1+ a ] -[1+ b ] +[1+ c ]
rewrite [1+m]⊖[1+n]≡m⊖n a b
| [1+m]⊖[1+n]≡m⊖n c b
| distribˡ-⊖-+-pos (suc c) a b
| distribʳ-⊖-+-pos (suc a) c b
| sym (ℕₚ.+-assoc a 1 c)
| ℕₚ.+-comm a 1
= refl
+-assoc +[1+ a ] +[1+ b ] -[1+ c ]
rewrite [1+m]⊖[1+n]≡m⊖n b c
| [1+m]⊖[1+n]≡m⊖n (a ℕ.+ suc b) c
| distribʳ-⊖-+-pos (suc a) b c
| sym (ℕₚ.+-assoc a 1 b)
| ℕₚ.+-comm a 1
= refl
+-assoc -[1+ a ] -[1+ b ] -[1+ c ]
rewrite sym (ℕₚ.+-assoc a 1 (b ℕ.+ c))
| ℕₚ.+-comm a 1
| ℕₚ.+-assoc a b c
= refl
+-assoc -[1+ a ] +[1+ b ] -[1+ c ]
rewrite [1+m]⊖[1+n]≡m⊖n b a
| [1+m]⊖[1+n]≡m⊖n b c
| distribʳ-⊖-+-neg a b c
| distribˡ-⊖-+-neg c b a
= refl
+-assoc +[1+ a ] +[1+ b ] +[1+ c ]
rewrite ℕₚ.+-assoc (suc a) (suc b) (suc c)
= refl
+-inverseˡ : LeftInverse +0 -_ _+_
+-inverseˡ -[1+ n ] = n⊖n≡0 (suc n)
+-inverseˡ +0 = refl
+-inverseˡ +[1+ n ] = n⊖n≡0 (suc n)
+-inverseʳ : RightInverse +0 -_ _+_
+-inverseʳ = comm+invˡ⇒invʳ +-comm +-inverseˡ
+-inverse : Inverse +0 -_ _+_
+-inverse = +-inverseˡ , +-inverseʳ
+-isMagma : IsMagma _+_
+-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _+_
}
+-isSemigroup : IsSemigroup _+_
+-isSemigroup = record
{ isMagma = +-isMagma
; assoc = +-assoc
}
+-isCommutativeSemigroup : IsCommutativeSemigroup _+_
+-isCommutativeSemigroup = record
{ isSemigroup = +-isSemigroup
; comm = +-comm
}
+-0-isMonoid : IsMonoid _+_ +0
+-0-isMonoid = record
{ isSemigroup = +-isSemigroup
; identity = +-identity
}
+-0-isCommutativeMonoid : IsCommutativeMonoid _+_ +0
+-0-isCommutativeMonoid = record
{ isMonoid = +-0-isMonoid
; comm = +-comm
}
+-0-isGroup : IsGroup _+_ +0 (-_)
+-0-isGroup = record
{ isMonoid = +-0-isMonoid
; inverse = +-inverse
; ⁻¹-cong = cong (-_)
}
+-isAbelianGroup : IsAbelianGroup _+_ +0 (-_)
+-isAbelianGroup = record
{ isGroup = +-0-isGroup
; comm = +-comm
}
+-magma : Magma 0ℓ 0ℓ
+-magma = record
{ isMagma = +-isMagma
}
+-semigroup : Semigroup 0ℓ 0ℓ
+-semigroup = record
{ isSemigroup = +-isSemigroup
}
+-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ
+-commutativeSemigroup = record
{ isCommutativeSemigroup = +-isCommutativeSemigroup
}
+-0-monoid : Monoid 0ℓ 0ℓ
+-0-monoid = record
{ isMonoid = +-0-isMonoid
}
+-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
+-0-commutativeMonoid = record
{ isCommutativeMonoid = +-0-isCommutativeMonoid
}
+-0-abelianGroup : AbelianGroup 0ℓ 0ℓ
+-0-abelianGroup = record
{ isAbelianGroup = +-isAbelianGroup
}
pos-+-commute : ℕtoℤ.Homomorphic₂ +_ ℕ._+_ _+_
pos-+-commute zero n = refl
pos-+-commute (suc m) n = cong sucℤ (pos-+-commute m n)
neg-distrib-+ : ∀ m n → - (m + n) ≡ (- m) + (- n)
neg-distrib-+ +0 +0 = refl
neg-distrib-+ +0 +[1+ n ] = refl
neg-distrib-+ +[1+ m ] +0 = cong -[1+_] (ℕₚ.+-identityʳ m)
neg-distrib-+ +[1+ m ] +[1+ n ] = cong -[1+_] (ℕₚ.+-suc m n)
neg-distrib-+ -[1+ m ] -[1+ n ] = cong (λ v → + suc v) (sym (ℕₚ.+-suc m n))
neg-distrib-+ (+ m) -[1+ n ] = -[n⊖m]≡-m+n m (suc n)
neg-distrib-+ -[1+ m ] (+ n) =
trans (-[n⊖m]≡-m+n n (suc m)) (+-comm (- + n) (+ suc m))
◃-distrib-+ : ∀ s m n → s ◃ (m ℕ.+ n) ≡ (s ◃ m) + (s ◃ n)
◃-distrib-+ Sign.- m n = begin
Sign.- ◃ (m ℕ.+ n) ≡⟨ -◃n≡-n (m ℕ.+ n) ⟩
- (+ (m ℕ.+ n)) ≡⟨⟩
- ((+ m) + (+ n)) ≡⟨ neg-distrib-+ (+ m) (+ n) ⟩
(- (+ m)) + (- (+ n)) ≡⟨ sym (cong₂ _+_ (-◃n≡-n m) (-◃n≡-n n)) ⟩
(Sign.- ◃ m) + (Sign.- ◃ n) ∎ where open ≡-Reasoning
◃-distrib-+ Sign.+ m n = begin
Sign.+ ◃ (m ℕ.+ n) ≡⟨ +◃n≡+n (m ℕ.+ n) ⟩
+ (m ℕ.+ n) ≡⟨⟩
(+ m) + (+ n) ≡⟨ sym (cong₂ _+_ (+◃n≡+n m) (+◃n≡+n n)) ⟩
(Sign.+ ◃ m) + (Sign.+ ◃ n) ∎ where open ≡-Reasoning
+-pos-monoʳ-≤ : ∀ n → (_+_ (+ n)) Preserves _≤_ ⟶ _≤_
+-pos-monoʳ-≤ n {_} (-≤- o≤m) = ⊖-monoʳ-≥-≤ n (s≤s o≤m)
+-pos-monoʳ-≤ n { -[1+ m ]} -≤+ = ≤-trans (m⊖n≤m n (suc m)) (+≤+ (ℕₚ.m≤m+n n _))
+-pos-monoʳ-≤ n {_} (+≤+ m≤o) = +≤+ (ℕₚ.+-monoʳ-≤ n m≤o)
+-neg-monoʳ-≤ : ∀ n → (_+_ (-[1+ n ])) Preserves _≤_ ⟶ _≤_
+-neg-monoʳ-≤ n {_} {_} (-≤- n≤m) = -≤- (ℕₚ.+-monoʳ-≤ (suc n) n≤m)
+-neg-monoʳ-≤ n {_} {+ m} -≤+ = ≤-trans (-≤- (ℕₚ.m≤m+n (suc n) _)) (-1+m≤n⊖m (suc n) m)
+-neg-monoʳ-≤ n {_} {_} (+≤+ m≤n) = ⊖-monoˡ-≤ (suc n) m≤n
+-monoʳ-≤ : ∀ n → (_+_ n) Preserves _≤_ ⟶ _≤_
+-monoʳ-≤ (+ n) = +-pos-monoʳ-≤ n
+-monoʳ-≤ -[1+ n ] = +-neg-monoʳ-≤ n
+-monoˡ-≤ : ∀ n → (_+ n) Preserves _≤_ ⟶ _≤_
+-monoˡ-≤ n {i} {j} i≤j
rewrite +-comm i n
| +-comm j n
= +-monoʳ-≤ n i≤j
+-mono-≤ : _+_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_
+-mono-≤ {m} {n} {i} {j} m≤n i≤j = begin
m + i ≤⟨ +-monoˡ-≤ i m≤n ⟩
n + i ≤⟨ +-monoʳ-≤ n i≤j ⟩
n + j ∎
where open ≤-Reasoning
≤-steps : ∀ {m n} p → m ≤ n → m ≤ + p + n
≤-steps p m≤n = subst (_≤ _) (+-identityˡ _) (+-mono-≤ (+≤+ z≤n) m≤n)
m≤m+n : ∀ {m} n → m ≤ m + + n
m≤m+n {m} n = begin
m ≡⟨ sym (+-identityʳ m) ⟩
m + + 0 ≤⟨ +-monoʳ-≤ m (+≤+ z≤n) ⟩
m + + n ∎
where open ≤-Reasoning
n≤m+n : ∀ m {n} → n ≤ + m + n
n≤m+n m {n} rewrite +-comm (+ m) n = m≤m+n m
+-monoʳ-< : ∀ n → (_+_ n) Preserves _<_ ⟶ _<_
+-monoʳ-< (+ n) {_} {_} (-<- o<m) = ⊖-monoʳ->-< n (s≤s o<m)
+-monoʳ-< (+ n) {_} {_} -<+ = <-≤-trans (m⊖1+n<m n _) (+≤+ (ℕₚ.m≤m+n n _))
+-monoʳ-< (+ n) {_} {_} (+<+ m<o) = +<+ (ℕₚ.+-monoʳ-< n m<o)
+-monoʳ-< -[1+ n ] {_} {_} (-<- o<m) = -<- (ℕₚ.+-monoʳ-< (suc n) o<m)
+-monoʳ-< -[1+ n ] {_} {+ o} -<+ = <-≤-trans (-<- (ℕₚ.m≤m+n (suc n) _)) (-[1+m]≤n⊖m+1 n o)
+-monoʳ-< -[1+ n ] {_} {_} (+<+ m<o) = ⊖-monoˡ-< (suc n) m<o
+-monoˡ-< : ∀ n → (_+ n) Preserves _<_ ⟶ _<_
+-monoˡ-< n {i} {j} i<j
rewrite +-comm i n
| +-comm j n
= +-monoʳ-< n i<j
+-mono-< : _+_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_
+-mono-< {m} {n} {i} {j} m<n i<j = begin-strict
m + i <⟨ +-monoˡ-< i m<n ⟩
n + i <⟨ +-monoʳ-< n i<j ⟩
n + j ∎
where open ≤-Reasoning
+-mono-≤-< : _+_ Preserves₂ _≤_ ⟶ _<_ ⟶ _<_
+-mono-≤-< {m} {n} {i} m≤n i<j = ≤-<-trans (+-monoˡ-≤ i m≤n) (+-monoʳ-< n i<j)
+-mono-<-≤ : _+_ Preserves₂ _<_ ⟶ _≤_ ⟶ _<_
+-mono-<-≤ {m} {n} {i} m<n i≤j = <-≤-trans (+-monoˡ-< i m<n) (+-monoʳ-≤ n i≤j)
neg-minus-pos : ∀ x y → -[1+ x ] - (+ y) ≡ -[1+ (y ℕ.+ x) ]
neg-minus-pos x zero = refl
neg-minus-pos zero (suc y) = cong (-[1+_] ∘ suc) (sym (ℕₚ.+-identityʳ y))
neg-minus-pos (suc x) (suc y) = cong (-[1+_] ∘ suc) (ℕₚ.+-comm (suc x) y)
+-minus-telescope : ∀ x y z → (x - y) + (y - z) ≡ x - z
+-minus-telescope x y z = begin
(x - y) + (y - z) ≡⟨ +-assoc x (- y) (y - z) ⟩
x + (- y + (y - z)) ≡⟨ cong (λ v → x + v) (sym (+-assoc (- y) y _)) ⟩
x + ((- y + y) - z) ≡⟨ sym (+-assoc x (- y + y) (- z)) ⟩
x + (- y + y) - z ≡⟨ cong (λ a → x + a - z) (+-inverseˡ y) ⟩
x + +0 - z ≡⟨ cong (_- z) (+-identityʳ x) ⟩
x - z ∎ where open ≡-Reasoning
[+m]-[+n]≡m⊖n : ∀ x y → (+ x) - (+ y) ≡ x ⊖ y
[+m]-[+n]≡m⊖n zero zero = refl
[+m]-[+n]≡m⊖n zero (suc y) = refl
[+m]-[+n]≡m⊖n (suc x) zero = cong (+_ ∘ suc) (ℕₚ.+-identityʳ x)
[+m]-[+n]≡m⊖n (suc x) (suc y) = refl
∣m-n∣≡∣n-m∣ : (x y : ℤ) → ∣ x - y ∣ ≡ ∣ y - x ∣
∣m-n∣≡∣n-m∣ -[1+ x ] -[1+ y ] = ∣m⊖n∣≡∣n⊖m∣ (suc y) (suc x)
∣m-n∣≡∣n-m∣ -[1+ x ] (+ y) = begin
∣ -[1+ x ] - (+ y) ∣ ≡⟨ cong ∣_∣ (neg-minus-pos x y) ⟩
suc (y ℕ.+ x) ≡⟨ sym (ℕₚ.+-suc y x) ⟩
y ℕ.+ suc x ∎ where open ≡-Reasoning
∣m-n∣≡∣n-m∣ (+ x) -[1+ y ] = begin
x ℕ.+ suc y ≡⟨ ℕₚ.+-suc x y ⟩
suc (x ℕ.+ y) ≡⟨ cong ∣_∣ (sym (neg-minus-pos y x)) ⟩
∣ -[1+ y ] + - (+ x) ∣ ∎ where open ≡-Reasoning
∣m-n∣≡∣n-m∣ (+ x) (+ y) = begin
∣ (+ x) - (+ y) ∣ ≡⟨ cong ∣_∣ ([+m]-[+n]≡m⊖n x y) ⟩
∣ x ⊖ y ∣ ≡⟨ ∣m⊖n∣≡∣n⊖m∣ x y ⟩
∣ y ⊖ x ∣ ≡⟨ cong ∣_∣ (sym ([+m]-[+n]≡m⊖n y x)) ⟩
∣ (+ y) - (+ x) ∣ ∎ where open ≡-Reasoning
m≡n⇒m-n≡0 : ∀ m n → m ≡ n → m - n ≡ + 0
m≡n⇒m-n≡0 m m refl = +-inverseʳ m
m-n≡0⇒m≡n : ∀ m n → m - n ≡ + 0 → m ≡ n
m-n≡0⇒m≡n m n m-n≡0 = begin
m ≡⟨ sym (+-identityʳ m) ⟩
m + + 0 ≡⟨ cong (_+_ m) (sym (+-inverseˡ n)) ⟩
m + (- n + n) ≡⟨ sym (+-assoc m (- n) n) ⟩
(m - n) + n ≡⟨ cong (_+ n) m-n≡0 ⟩
+ 0 + n ≡⟨ +-identityˡ n ⟩
n ∎ where open ≡-Reasoning
≤-steps-neg : ∀ {m n} p → m ≤ n → m - + p ≤ n
≤-steps-neg {m} zero m≤n rewrite +-identityʳ m = m≤n
≤-steps-neg {+ m} (suc p) m≤n = ≤-trans (m⊖n≤m m (suc p)) m≤n
≤-steps-neg { -[1+ n ]} (suc p) m≤n = ≤-trans (-≤- (ℕₚ.≤-trans (ℕₚ.m≤m+n n p) (ℕₚ.n≤1+n _))) m≤n
neg-mono-≤ : -_ Preserves _≤_ ⟶ _≥_
neg-mono-≤ -≤+ = neg-≤-pos
neg-mono-≤ (-≤- n≤m) = +≤+ (s≤s n≤m)
neg-mono-≤ (+≤+ z≤n) = neg-≤-pos
neg-mono-≤ (+≤+ (s≤s m≤n)) = -≤- m≤n
neg-cancel-≤ : ∀ {m n} → - m ≤ - n → m ≥ n
neg-cancel-≤ { +[1+ m ]} { +[1+ n ]} (-≤- n≤m) = +≤+ (s≤s n≤m)
neg-cancel-≤ { +[1+ m ]} { +0} -≤+ = +≤+ z≤n
neg-cancel-≤ { +[1+ m ]} { -[1+ n ]} -≤+ = -≤+
neg-cancel-≤ { +0} { +0} _ = +≤+ z≤n
neg-cancel-≤ { +0} { -[1+ n ]} _ = -≤+
neg-cancel-≤ { -[1+ m ]} { +0} (+≤+ ())
neg-cancel-≤ { -[1+ m ]} { -[1+ n ]} (+≤+ (s≤s m≤n)) = -≤- m≤n
m-n≤m : ∀ m n → m - + n ≤ m
m-n≤m m n = ≤-steps-neg n ≤-refl
m≤n⇒m-n≤0 : ∀ {m n} → m ≤ n → m - n ≤ + 0
m≤n⇒m-n≤0 (-≤+ {n = n}) = ≤-steps-neg n -≤+
m≤n⇒m-n≤0 (-≤- {m} {n} n≤m) = begin
suc n ⊖ suc m ≡⟨ [1+m]⊖[1+n]≡m⊖n n m ⟩
n ⊖ m ≤⟨ ⊖-monoʳ-≥-≤ n n≤m ⟩
n ⊖ n ≡⟨ n⊖n≡0 n ⟩
+0 ∎ where open ≤-Reasoning
m≤n⇒m-n≤0 {n = + 0} (+≤+ z≤n) = +≤+ z≤n
m≤n⇒m-n≤0 {n = + suc n} (+≤+ z≤n) = -≤+
m≤n⇒m-n≤0 (+≤+ (s≤s {m} {n} m≤n)) = begin
suc m ⊖ suc n ≡⟨ [1+m]⊖[1+n]≡m⊖n m n ⟩
m ⊖ n ≤⟨ ⊖-monoʳ-≥-≤ m m≤n ⟩
m ⊖ m ≡⟨ n⊖n≡0 m ⟩
+0 ∎ where open ≤-Reasoning
m-n≤0⇒m≤n : ∀ {m n} → m - n ≤ + 0 → m ≤ n
m-n≤0⇒m≤n {m} {n} m-n≤0 = begin
m ≡⟨ sym (+-identityʳ m) ⟩
m + + 0 ≡⟨ cong (_+_ m) (sym (+-inverseˡ n)) ⟩
m + (- n + n) ≡⟨ sym (+-assoc m (- n) n) ⟩
(m - n) + n ≤⟨ +-monoˡ-≤ n m-n≤0 ⟩
+ 0 + n ≡⟨ +-identityˡ n ⟩
n ∎
where open ≤-Reasoning
m≤n⇒0≤n-m : ∀ {m n} → m ≤ n → + 0 ≤ n - m
m≤n⇒0≤n-m {m} {n} m≤n = begin
+ 0 ≡⟨ sym (+-inverseʳ m) ⟩
m - m ≤⟨ +-monoˡ-≤ (- m) m≤n ⟩
n - m ∎
where open ≤-Reasoning
0≤n-m⇒m≤n : ∀ {m n} → + 0 ≤ n - m → m ≤ n
0≤n-m⇒m≤n {m} {n} 0≤n-m = begin
m ≡⟨ sym (+-identityˡ m) ⟩
+ 0 + m ≤⟨ +-monoˡ-≤ m 0≤n-m ⟩
n - m + m ≡⟨ +-assoc n (- m) m ⟩
n + (- m + m) ≡⟨ cong (_+_ n) (+-inverseˡ m) ⟩
n + + 0 ≡⟨ +-identityʳ n ⟩
n ∎
where open ≤-Reasoning
≤-step : ∀ {n m} → n ≤ m → n ≤ sucℤ m
≤-step = ≤-steps 1
n≤1+n : ∀ n → n ≤ sucℤ n
n≤1+n n = ≤-steps 1 ≤-refl
suc-+ : ∀ m n → + suc m + n ≡ sucℤ (+ m + n)
suc-+ m (+ n) = refl
suc-+ m (-[1+ n ]) = sym (distribʳ-⊖-+-pos 1 m (suc n))
n≢1+n : ∀ {n} → n ≢ sucℤ n
n≢1+n {+ _} ()
n≢1+n { -[1+ 0 ]} ()
n≢1+n { -[1+ suc n ]} ()
1-[1+n]≡-n : ∀ n → sucℤ -[1+ n ] ≡ - (+ n)
1-[1+n]≡-n zero = refl
1-[1+n]≡-n (suc n) = refl
suc-mono : sucℤ Preserves _≤_ ⟶ _≤_
suc-mono (-≤+ {m} {n}) = begin
1 ⊖ suc m ≡⟨ [1+m]⊖[1+n]≡m⊖n 0 m ⟩
0 ⊖ m ≤⟨ 0⊖m≤+ m ⟩
sucℤ (+ n) ∎ where open ≤-Reasoning
suc-mono (-≤- n≤m) = ⊖-monoʳ-≥-≤ 1 (s≤s n≤m)
suc-mono (+≤+ m≤n) = +≤+ (s≤s m≤n)
suc[i]≤j⇒i<j : ∀ {i j} → sucℤ i ≤ j → i < j
suc[i]≤j⇒i<j {+ i} {+ _} (+≤+ i≤j) = +<+ i≤j
suc[i]≤j⇒i<j { -[1+ 0 ]} {+ j} p = -<+
suc[i]≤j⇒i<j { -[1+ suc i ]} {+ j} -≤+ = -<+
suc[i]≤j⇒i<j { -[1+ suc i ]} { -[1+ j ]} (-≤- j≤i) = -<- (ℕ.s≤s j≤i)
i<j⇒suc[i]≤j : ∀ {i j} → i < j → sucℤ i ≤ j
i<j⇒suc[i]≤j {+ _} {+ _} (+<+ i<j) = +≤+ i<j
i<j⇒suc[i]≤j { -[1+ 0 ]} {+ _} -<+ = +≤+ z≤n
i<j⇒suc[i]≤j { -[1+ suc i ]} { -[1+ _ ]} (-<- j<i) = -≤- (ℕ.≤-pred j<i)
i<j⇒suc[i]≤j { -[1+ suc i ]} {+ _} -<+ = -≤+
suc-pred : ∀ m → sucℤ (pred m) ≡ m
suc-pred m = begin
sucℤ (pred m) ≡⟨ sym (+-assoc (+ 1) (- + 1) m) ⟩
+ 0 + m ≡⟨ +-identityˡ m ⟩
m ∎ where open ≡-Reasoning
pred-suc : ∀ m → pred (sucℤ m) ≡ m
pred-suc m = begin
pred (sucℤ m) ≡⟨ sym (+-assoc (- + 1) (+ 1) m) ⟩
+ 0 + m ≡⟨ +-identityˡ m ⟩
m ∎ where open ≡-Reasoning
+-pred : ∀ m n → m + pred n ≡ pred (m + n)
+-pred m n = begin
m + (-[1+ 0 ] + n) ≡⟨ sym (+-assoc m -[1+ 0 ] n) ⟩
m + -[1+ 0 ] + n ≡⟨ cong (_+ n) (+-comm m -[1+ 0 ]) ⟩
-[1+ 0 ] + m + n ≡⟨ +-assoc -[1+ 0 ] m n ⟩
-[1+ 0 ] + (m + n) ∎ where open ≡-Reasoning
pred-+ : ∀ m n → pred m + n ≡ pred (m + n)
pred-+ m n = begin
pred m + n ≡⟨ +-comm (pred m) n ⟩
n + pred m ≡⟨ +-pred n m ⟩
pred (n + m) ≡⟨ cong pred (+-comm n m) ⟩
pred (m + n) ∎ where open ≡-Reasoning
neg-suc : ∀ m → - + suc m ≡ pred (- + m)
neg-suc zero = refl
neg-suc (suc m) = refl
minus-suc : ∀ m n → m - + suc n ≡ pred (m - + n)
minus-suc m n = begin
m + - + suc n ≡⟨ cong (_+_ m) (neg-suc n) ⟩
m + pred (- (+ n)) ≡⟨ +-pred m (- + n) ⟩
pred (m - + n) ∎ where open ≡-Reasoning
m≤pred[n]⇒m<n : ∀ {m n} → m ≤ pred n → m < n
m≤pred[n]⇒m<n {m} { + n} m≤predn = ≤-<-trans m≤predn (m⊖1+n<m n 0)
m≤pred[n]⇒m<n {m} { -[1+ n ]} m≤predn = ≤-<-trans m≤predn (-<- ℕₚ.≤-refl)
m<n⇒m≤pred[n] : ∀ {m n} → m < n → m ≤ pred n
m<n⇒m≤pred[n] {_} { +0} -<+ = -≤- z≤n
m<n⇒m≤pred[n] {_} { +[1+ n ]} -<+ = -≤+
m<n⇒m≤pred[n] {_} { +[1+ n ]} (+<+ m<n) = +≤+ (ℕₚ.≤-pred m<n)
m<n⇒m≤pred[n] {_} { -[1+ n ]} (-<- n<m) = -≤- n<m
≤-step-neg : ∀ {m n} → m ≤ n → pred m ≤ n
≤-step-neg -≤+ = -≤+
≤-step-neg (-≤- n≤m) = -≤- (ℕₚ.≤-step n≤m)
≤-step-neg (+≤+ z≤n) = -≤+
≤-step-neg (+≤+ (s≤s m≤n)) = +≤+ (ℕₚ.≤-step m≤n)
pred-mono : pred Preserves _≤_ ⟶ _≤_
pred-mono (-≤+ {n = 0}) = -≤- z≤n
pred-mono (-≤+ {n = suc n}) = -≤+
pred-mono (-≤- n≤m) = -≤- (s≤s n≤m)
pred-mono (+≤+ m≤n) = ⊖-monoˡ-≤ 1 m≤n
*-comm : Commutative _*_
*-comm -[1+ a ] -[1+ b ] rewrite ℕₚ.*-comm (suc a) (suc b) = refl
*-comm -[1+ a ] (+ b ) rewrite ℕₚ.*-comm (suc a) b = refl
*-comm (+ a ) -[1+ b ] rewrite ℕₚ.*-comm a (suc b) = refl
*-comm (+ a ) (+ b ) rewrite ℕₚ.*-comm a b = refl
*-identityˡ : LeftIdentity (+ 1) _*_
*-identityˡ -[1+ n ] rewrite ℕₚ.+-identityʳ n = refl
*-identityˡ +0 = refl
*-identityˡ +[1+ n ] rewrite ℕₚ.+-identityʳ n = refl
*-identityʳ : RightIdentity (+ 1) _*_
*-identityʳ = comm+idˡ⇒idʳ *-comm *-identityˡ
*-identity : Identity (+ 1) _*_
*-identity = *-identityˡ , *-identityʳ
*-zeroˡ : LeftZero +0 _*_
*-zeroˡ n = refl
*-zeroʳ : RightZero +0 _*_
*-zeroʳ = comm+zeˡ⇒zeʳ *-comm *-zeroˡ
*-zero : Zero +0 _*_
*-zero = *-zeroˡ , *-zeroʳ
private
lemma : ∀ a b c → c ℕ.+ (b ℕ.+ a ℕ.* suc b) ℕ.* suc c
≡ c ℕ.+ b ℕ.* suc c ℕ.+ a ℕ.* suc (c ℕ.+ b ℕ.* suc c)
lemma =
solve 3 (λ a b c → c :+ (b :+ a :* (con 1 :+ b)) :* (con 1 :+ c)
:= c :+ b :* (con 1 :+ c) :+
a :* (con 1 :+ (c :+ b :* (con 1 :+ c))))
refl
*-assoc : Associative _*_
*-assoc +0 _ _ = refl
*-assoc x +0 z rewrite ℕₚ.*-zeroʳ ∣ x ∣ = refl
*-assoc x y +0 rewrite
ℕₚ.*-zeroʳ ∣ y ∣
| ℕₚ.*-zeroʳ ∣ x ∣
| ℕₚ.*-zeroʳ ∣ sign x 𝕊* sign y ◃ ∣ x ∣ ℕ.* ∣ y ∣ ∣
= refl
*-assoc -[1+ a ] -[1+ b ] +[1+ c ] = cong (+_ ∘ suc) (lemma a b c)
*-assoc -[1+ a ] +[1+ b ] -[1+ c ] = cong (+_ ∘ suc) (lemma a b c)
*-assoc +[1+ a ] +[1+ b ] +[1+ c ] = cong (+_ ∘ suc) (lemma a b c)
*-assoc +[1+ a ] -[1+ b ] -[1+ c ] = cong (+_ ∘ suc) (lemma a b c)
*-assoc -[1+ a ] -[1+ b ] -[1+ c ] = cong -[1+_] (lemma a b c)
*-assoc -[1+ a ] +[1+ b ] +[1+ c ] = cong -[1+_] (lemma a b c)
*-assoc +[1+ a ] -[1+ b ] +[1+ c ] = cong -[1+_] (lemma a b c)
*-assoc +[1+ a ] +[1+ b ] -[1+ c ] = cong -[1+_] (lemma a b c)
private
distrib-lemma :
∀ a b c → (c ⊖ b) * -[1+ a ] ≡ a ℕ.+ b ℕ.* suc a ⊖ (a ℕ.+ c ℕ.* suc a)
distrib-lemma a b c
rewrite +-cancelˡ-⊖ a (b ℕ.* suc a) (c ℕ.* suc a)
| ⊖-swap (b ℕ.* suc a) (c ℕ.* suc a)
with b ℕ.≤? c
... | yes b≤c
rewrite ⊖-≥ b≤c
| ⊖-≥ (ℕₚ.*-mono-≤ b≤c (ℕₚ.≤-refl {x = suc a}))
| -◃n≡-n ((c ∸ b) ℕ.* suc a)
| ℕₚ.*-distribʳ-∸ (suc a) c b
= refl
... | no b≰c
rewrite sign-⊖-≰ b≰c
| ∣⊖∣-≰ b≰c
| +◃n≡+n ((b ∸ c) ℕ.* suc a)
| ⊖-≰ (b≰c ∘ ℕₚ.*-cancelʳ-≤ b c a)
| neg-involutive (+ (b ℕ.* suc a ∸ c ℕ.* suc a))
| ℕₚ.*-distribʳ-∸ (suc a) b c
= refl
*-distribʳ-+ : _*_ DistributesOverʳ _+_
*-distribʳ-+ +0 y z
rewrite ℕₚ.*-zeroʳ ∣ y ∣
| ℕₚ.*-zeroʳ ∣ z ∣
| ℕₚ.*-zeroʳ ∣ y + z ∣
= refl
*-distribʳ-+ x +0 z
rewrite +-identityˡ z
| +-identityˡ (sign z 𝕊* sign x ◃ ∣ z ∣ ℕ.* ∣ x ∣)
= refl
*-distribʳ-+ x y +0
rewrite +-identityʳ y
| +-identityʳ (sign y 𝕊* sign x ◃ ∣ y ∣ ℕ.* ∣ x ∣)
= refl
*-distribʳ-+ -[1+ a ] -[1+ b ] -[1+ c ] = cong (+_) $
solve 3 (λ a b c → (con 2 :+ b :+ c) :* (con 1 :+ a)
:= (con 1 :+ b) :* (con 1 :+ a) :+
(con 1 :+ c) :* (con 1 :+ a))
refl a b c
*-distribʳ-+ (+ suc a) (+ suc b) (+ suc c) = cong (+_) $
solve 3 (λ a b c → (con 1 :+ b :+ (con 1 :+ c)) :* (con 1 :+ a)
:= (con 1 :+ b) :* (con 1 :+ a) :+
(con 1 :+ c) :* (con 1 :+ a))
refl a b c
*-distribʳ-+ -[1+ a ] (+ suc b) (+ suc c) = cong -[1+_] $
solve 3 (λ a b c → a :+ (b :+ (con 1 :+ c)) :* (con 1 :+ a)
:= (con 1 :+ b) :* (con 1 :+ a) :+
(a :+ c :* (con 1 :+ a)))
refl a b c
*-distribʳ-+ (+ suc a) -[1+ b ] -[1+ c ] = cong -[1+_] $
solve 3 (λ a b c → a :+ (con 1 :+ a :+ (b :+ c) :* (con 1 :+ a))
:= (con 1 :+ b) :* (con 1 :+ a) :+
(a :+ c :* (con 1 :+ a)))
refl a b c
*-distribʳ-+ -[1+ a ] -[1+ b ] (+ suc c) = begin
(suc c ⊖ suc b) * -[1+ a ] ≡⟨ cong (_* -[1+ a ]) ([1+m]⊖[1+n]≡m⊖n c b) ⟩
(c ⊖ b) * -[1+ a ] ≡⟨ distrib-lemma a b c ⟩
a ℕ.+ b ℕ.* suc a ⊖ (a ℕ.+ c ℕ.* suc a) ≡˘⟨ [1+m]⊖[1+n]≡m⊖n (a ℕ.+ b ℕ.* suc a) (a ℕ.+ c ℕ.* suc a) ⟩
-[1+ b ] * -[1+ a ] + +[1+ c ] * -[1+ a ] ∎ where open ≡-Reasoning
*-distribʳ-+ -[1+ a ] (+ suc b) -[1+ c ] = begin
(+[1+ b ] + -[1+ c ]) * -[1+ a ] ≡⟨ cong (_* -[1+ a ]) ([1+m]⊖[1+n]≡m⊖n b c) ⟩
(b ⊖ c) * -[1+ a ] ≡⟨ distrib-lemma a c b ⟩
a ℕ.+ c ℕ.* suc a ⊖ (a ℕ.+ b ℕ.* suc a) ≡˘⟨ [1+m]⊖[1+n]≡m⊖n (a ℕ.+ c ℕ.* suc a) (a ℕ.+ b ℕ.* suc a) ⟩
+[1+ b ] * -[1+ a ] + -[1+ c ] * -[1+ a ] ∎ where open ≡-Reasoning
*-distribʳ-+ (+ suc a) -[1+ b ] (+ suc c) with b ℕ.≤? c
... | yes b≤c
rewrite [1+m]⊖[1+n]≡m⊖n c b
| [1+m]⊖[1+n]≡m⊖n (a ℕ.+ c ℕ.* suc a) (a ℕ.+ b ℕ.* suc a)
| +-cancelˡ-⊖ a (c ℕ.* suc a) (b ℕ.* suc a)
| ⊖-≥ b≤c
| +-comm (- (+ (a ℕ.+ b ℕ.* suc a))) (+ (a ℕ.+ c ℕ.* suc a))
| ⊖-≥ (ℕₚ.*-mono-≤ b≤c (ℕₚ.≤-refl {x = suc a}))
| ℕₚ.*-distribʳ-∸ (suc a) c b
| +◃n≡+n (c ℕ.* suc a ∸ b ℕ.* suc a)
= refl
... | no b≰c
rewrite [1+m]⊖[1+n]≡m⊖n c b
| [1+m]⊖[1+n]≡m⊖n (a ℕ.+ c ℕ.* suc a) (a ℕ.+ b ℕ.* suc a)
| +-cancelˡ-⊖ a (c ℕ.* suc a) (b ℕ.* suc a)
| sign-⊖-≰ b≰c
| ∣⊖∣-≰ b≰c
| -◃n≡-n ((b ∸ c) ℕ.* suc a)
| ⊖-≰ (b≰c ∘ ℕₚ.*-cancelʳ-≤ b c a)
| ℕₚ.*-distribʳ-∸ (suc a) b c
= refl
*-distribʳ-+ (+ suc c) (+ suc a) -[1+ b ] with b ℕ.≤? a
... | yes b≤a
rewrite [1+m]⊖[1+n]≡m⊖n a b
| [1+m]⊖[1+n]≡m⊖n (c ℕ.+ a ℕ.* suc c) (c ℕ.+ b ℕ.* suc c)
| +-cancelˡ-⊖ c (a ℕ.* suc c) (b ℕ.* suc c)
| ⊖-≥ b≤a
| ⊖-≥ (ℕₚ.*-mono-≤ b≤a (ℕₚ.≤-refl {x = suc c}))
| +◃n≡+n ((a ∸ b) ℕ.* suc c)
| ℕₚ.*-distribʳ-∸ (suc c) a b
= refl
... | no b≰a
rewrite [1+m]⊖[1+n]≡m⊖n a b
| [1+m]⊖[1+n]≡m⊖n (c ℕ.+ a ℕ.* suc c) (c ℕ.+ b ℕ.* suc c)
| +-cancelˡ-⊖ c (a ℕ.* suc c) (b ℕ.* suc c)
| sign-⊖-≰ b≰a
| ∣⊖∣-≰ b≰a
| ⊖-≰ (b≰a ∘ ℕₚ.*-cancelʳ-≤ b a c)
| -◃n≡-n ((b ∸ a) ℕ.* suc c)
| ℕₚ.*-distribʳ-∸ (suc c) b a
= refl
*-distribˡ-+ : _*_ DistributesOverˡ _+_
*-distribˡ-+ = comm+distrʳ⇒distrˡ *-comm *-distribʳ-+
*-distrib-+ : _*_ DistributesOver _+_
*-distrib-+ = *-distribˡ-+ , *-distribʳ-+
*-isMagma : IsMagma _*_
*-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _*_
}
*-isSemigroup : IsSemigroup _*_
*-isSemigroup = record
{ isMagma = *-isMagma
; assoc = *-assoc
}
*-isCommutativeSemigroup : IsCommutativeSemigroup _*_
*-isCommutativeSemigroup = record
{ isSemigroup = *-isSemigroup
; comm = *-comm
}
*-1-isMonoid : IsMonoid _*_ (+ 1)
*-1-isMonoid = record
{ isSemigroup = *-isSemigroup
; identity = *-identity
}
*-1-isCommutativeMonoid : IsCommutativeMonoid _*_ (+ 1)
*-1-isCommutativeMonoid = record
{ isMonoid = *-1-isMonoid
; comm = *-comm
}
+-*-isSemiring : IsSemiring _+_ _*_ +0 (+ 1)
+-*-isSemiring = record
{ isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = +-0-isCommutativeMonoid
; *-isMonoid = *-1-isMonoid
; distrib = *-distrib-+
}
; zero = *-zero
}
+-*-isCommutativeSemiring : IsCommutativeSemiring _+_ _*_ +0 (+ 1)
+-*-isCommutativeSemiring = record
{ isSemiring = +-*-isSemiring
; *-comm = *-comm
}
+-*-isRing : IsRing _+_ _*_ -_ +0 (+ 1)
+-*-isRing = record
{ +-isAbelianGroup = +-isAbelianGroup
; *-isMonoid = *-1-isMonoid
; distrib = *-distrib-+
; zero = *-zero
}
+-*-isCommutativeRing : IsCommutativeRing _+_ _*_ -_ +0 (+ 1)
+-*-isCommutativeRing = record
{ isRing = +-*-isRing
; *-comm = *-comm
}
*-magma : Magma 0ℓ 0ℓ
*-magma = record
{ isMagma = *-isMagma
}
*-semigroup : Semigroup 0ℓ 0ℓ
*-semigroup = record
{ isSemigroup = *-isSemigroup
}
*-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ
*-commutativeSemigroup = record
{ isCommutativeSemigroup = *-isCommutativeSemigroup
}
*-1-monoid : Monoid 0ℓ 0ℓ
*-1-monoid = record
{ isMonoid = *-1-isMonoid
}
*-1-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
*-1-commutativeMonoid = record
{ isCommutativeMonoid = *-1-isCommutativeMonoid
}
+-*-semiring : Semiring 0ℓ 0ℓ
+-*-semiring = record
{ isSemiring = +-*-isSemiring
}
+-*-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ
+-*-commutativeSemiring = record
{ isCommutativeSemiring = +-*-isCommutativeSemiring
}
+-*-ring : Ring 0ℓ 0ℓ
+-*-ring = record
{ isRing = +-*-isRing
}
+-*-commutativeRing : CommutativeRing 0ℓ 0ℓ
+-*-commutativeRing = record
{ isCommutativeRing = +-*-isCommutativeRing
}
abs-*-commute : ℤtoℕ.Homomorphic₂ ∣_∣ _*_ ℕ._*_
abs-*-commute i j = abs-◃ _ _
*-cancelʳ-≡ : ∀ i j k → k ≢ + 0 → i * k ≡ j * k → i ≡ j
*-cancelʳ-≡ i j k ≢0 eq with signAbs k
*-cancelʳ-≡ i j .+0 ≢0 eq | s ◂ zero = contradiction refl ≢0
*-cancelʳ-≡ i j .(s ◃ suc n) ≢0 eq | s ◂ suc n
with ∣ s ◃ suc n ∣ | abs-◃ s (suc n) | sign (s ◃ suc n) | sign-◃ s n
... | .(suc n) | refl | .s | refl =
◃-cong (sign-i≡sign-j i j eq) $
ℕₚ.*-cancelʳ-≡ ∣ i ∣ ∣ j ∣ $ abs-cong eq
where
sign-i≡sign-j : ∀ i j →
(sign i 𝕊* s) ◃ (∣ i ∣ ℕ.* suc n) ≡
(sign j 𝕊* s) ◃ (∣ j ∣ ℕ.* suc n) →
sign i ≡ sign j
sign-i≡sign-j i j eq with signAbs i | signAbs j
sign-i≡sign-j .+0 .+0 eq | s₁ ◂ zero | s₂ ◂ zero = refl
sign-i≡sign-j .+0 .(s₂ ◃ suc n₂) eq | s₁ ◂ zero | s₂ ◂ suc n₂
with ∣ s₂ ◃ suc n₂ ∣ | abs-◃ s₂ (suc n₂)
... | .(suc n₂) | refl
with abs-cong {s₁} {sign (s₂ ◃ suc n₂) 𝕊* s} {0} {suc n₂ ℕ.* suc n} eq
... | ()
sign-i≡sign-j .(s₁ ◃ suc n₁) .+0 eq | s₁ ◂ suc n₁ | s₂ ◂ zero
with ∣ s₁ ◃ suc n₁ ∣ | abs-◃ s₁ (suc n₁)
... | .(suc n₁) | refl
with abs-cong {sign (s₁ ◃ suc n₁) 𝕊* s} {s₁} {suc n₁ ℕ.* suc n} {0} eq
... | ()
sign-i≡sign-j .(s₁ ◃ suc n₁) .(s₂ ◃ suc n₂) eq | s₁ ◂ suc n₁ | s₂ ◂ suc n₂
with ∣ s₁ ◃ suc n₁ ∣ | abs-◃ s₁ (suc n₁)
| sign (s₁ ◃ suc n₁) | sign-◃ s₁ n₁
| ∣ s₂ ◃ suc n₂ ∣ | abs-◃ s₂ (suc n₂)
| sign (s₂ ◃ suc n₂) | sign-◃ s₂ n₂
... | .(suc n₁) | refl | .s₁ | refl | .(suc n₂) | refl | .s₂ | refl =
𝕊ₚ.*-cancelʳ-≡ s₁ s₂ (sign-cong eq)
*-cancelˡ-≡ : ∀ i j k → i ≢ + 0 → i * j ≡ i * k → j ≡ k
*-cancelˡ-≡ i j k
rewrite *-comm i j
| *-comm i k
= *-cancelʳ-≡ j k i
suc-* : ∀ m n → sucℤ m * n ≡ n + m * n
suc-* m n = begin
sucℤ m * n ≡⟨ *-distribʳ-+ n (+ 1) m ⟩
+ 1 * n + m * n ≡⟨ cong (_+ m * n) (*-identityˡ n) ⟩
n + m * n ∎
where open ≡-Reasoning
*-suc : ∀ m n → m * sucℤ n ≡ m + m * n
*-suc m n = begin
m * sucℤ n ≡⟨ *-comm m _ ⟩
sucℤ n * m ≡⟨ suc-* n m ⟩
m + n * m ≡⟨ cong (λ v → m + v) (*-comm n m) ⟩
m + m * n ∎
where open ≡-Reasoning
-1*n≡-n : ∀ n → -[1+ 0 ] * n ≡ - n
-1*n≡-n -[1+ n ] = cong (λ v → + suc v) (ℕₚ.+-identityʳ n)
-1*n≡-n +0 = refl
-1*n≡-n +[1+ n ] = cong -[1+_] (ℕₚ.+-identityʳ n)
m*n≡0⇒m≡0∨n≡0 : ∀ m {n} → m * n ≡ 0ℤ → m ≡ 0ℤ ⊎ n ≡ 0ℤ
m*n≡0⇒m≡0∨n≡0 m p with ℕₚ.m*n≡0⇒m≡0∨n≡0 ∣ m ∣ (abs-cong {s₂ = Sign.+} p)
... | inj₁ ∣m∣≡0 = inj₁ (∣n∣≡0⇒n≡0 ∣m∣≡0)
... | inj₂ ∣n∣≡0 = inj₂ (∣n∣≡0⇒n≡0 ∣n∣≡0)
pos-distrib-* : ∀ x y → (+ x) * (+ y) ≡ + (x ℕ.* y)
pos-distrib-* zero y = refl
pos-distrib-* (suc x) zero = pos-distrib-* x zero
pos-distrib-* (suc x) (suc y) = refl
neg-distribˡ-* : ∀ x y → - (x * y) ≡ (- x) * y
neg-distribˡ-* x y = begin
- (x * y) ≡⟨ sym (-1*n≡-n (x * y)) ⟩
-[1+ 0 ] * (x * y) ≡⟨ sym (*-assoc -[1+ 0 ] x y) ⟩
-[1+ 0 ] * x * y ≡⟨ cong (_* y) (-1*n≡-n x) ⟩
- x * y ∎ where open ≡-Reasoning
neg-distribʳ-* : ∀ x y → - (x * y) ≡ x * (- y)
neg-distribʳ-* x y = begin
- (x * y) ≡⟨ cong -_ (*-comm x y) ⟩
- (y * x) ≡⟨ neg-distribˡ-* y x ⟩
- y * x ≡⟨ *-comm (- y) x ⟩
x * (- y) ∎ where open ≡-Reasoning
◃-distrib-* : ∀ s t m n → (s 𝕊* t) ◃ (m ℕ.* n) ≡ (s ◃ m) * (t ◃ n)
◃-distrib-* s t zero zero = refl
◃-distrib-* s t zero (suc n) = refl
◃-distrib-* s t (suc m) zero =
trans
(cong₂ _◃_ (𝕊ₚ.*-comm s t) (ℕₚ.*-comm m 0))
(*-comm (t ◃ zero) (s ◃ suc m))
◃-distrib-* s t (suc m) (suc n) =
sym (cong₂ _◃_
(cong₂ _𝕊*_ (sign-◃ s m) (sign-◃ t n))
(∣s◃m∣*∣t◃n∣≡m*n s t (suc m) (suc n)))
*-cancelʳ-≤-pos : ∀ m n o → m * + suc o ≤ n * + suc o → m ≤ n
*-cancelʳ-≤-pos (-[1+ m ]) (-[1+ n ]) o (-≤- n≤m) =
-≤- (ℕₚ.≤-pred (ℕₚ.*-cancelʳ-≤ (suc n) (suc m) o (s≤s n≤m)))
*-cancelʳ-≤-pos -[1+ _ ] (+ _) _ _ = -≤+
*-cancelʳ-≤-pos +0 +0 _ _ = +≤+ z≤n
*-cancelʳ-≤-pos +0 (+ suc _) _ _ = +≤+ z≤n
*-cancelʳ-≤-pos (+ suc _) +0 _ (+≤+ ())
*-cancelʳ-≤-pos (+ suc m) (+ suc n) o (+≤+ m≤n) =
+≤+ (ℕₚ.*-cancelʳ-≤ (suc m) (suc n) o m≤n)
*-cancelˡ-≤-pos : ∀ m n o → + suc m * n ≤ + suc m * o → n ≤ o
*-cancelˡ-≤-pos m n o
rewrite *-comm (+ suc m) n
| *-comm (+ suc m) o
= *-cancelʳ-≤-pos n o m
*-monoʳ-≤-pos : ∀ n → (_* + suc n) Preserves _≤_ ⟶ _≤_
*-monoʳ-≤-pos _ (-≤+ {n = 0}) = -≤+
*-monoʳ-≤-pos _ (-≤+ {n = suc _}) = -≤+
*-monoʳ-≤-pos x (-≤- n≤m) =
-≤- (ℕₚ.≤-pred (ℕₚ.*-mono-≤ (s≤s n≤m) (ℕₚ.≤-refl {x = suc x})))
*-monoʳ-≤-pos k {+ 0} {+ 0} (+≤+ m≤n) = +≤+ m≤n
*-monoʳ-≤-pos k {+ 0} {+ suc _} (+≤+ m≤n) = +≤+ z≤n
*-monoʳ-≤-pos x (+≤+ {m = suc _} {n = suc _} m≤n) =
+≤+ ((ℕₚ.*-mono-≤ m≤n (ℕₚ.≤-refl {x = suc x})))
*-monoʳ-≤-nonNeg : ∀ n → (_* + n) Preserves _≤_ ⟶ _≤_
*-monoʳ-≤-nonNeg (suc n) = *-monoʳ-≤-pos n
*-monoʳ-≤-nonNeg zero {i} {j} i≤j
rewrite *-zeroʳ i
| *-zeroʳ j
= +≤+ z≤n
*-monoˡ-≤-nonNeg : ∀ n → (+ n *_) Preserves _≤_ ⟶ _≤_
*-monoˡ-≤-nonNeg n {i} {j} i≤j
rewrite *-comm (+ n) i
| *-comm (+ n) j
= *-monoʳ-≤-nonNeg n i≤j
*-monoˡ-≤-pos : ∀ n → (+ suc n *_) Preserves _≤_ ⟶ _≤_
*-monoˡ-≤-pos n = *-monoˡ-≤-nonNeg (suc n)
*-cancelˡ-≤-neg : ∀ m {n o} → -[1+ m ] * n ≤ -[1+ m ] * o → n ≥ o
*-cancelˡ-≤-neg m {n} {o} -[1+m]*n≤-[1+m]*o = neg-cancel-≤ (*-cancelˡ-≤-pos m (- n) (- o) (begin
+[1+ m ] * - n ≡˘⟨ neg-distribʳ-* +[1+ m ] n ⟩
-(+[1+ m ] * n) ≡⟨ neg-distribˡ-* +[1+ m ] n ⟩
-[1+ m ] * n ≤⟨ -[1+m]*n≤-[1+m]*o ⟩
-[1+ m ] * o ≡˘⟨ neg-distribˡ-* +[1+ m ] o ⟩
-(+[1+ m ] * o) ≡⟨ neg-distribʳ-* +[1+ m ] o ⟩
+[1+ m ] * - o ∎))
where open ≤-Reasoning
*-cancelʳ-≤-neg : ∀ {n o} m → n * -[1+ m ] ≤ o * -[1+ m ] → n ≥ o
*-cancelʳ-≤-neg {n} {o} m n*-[1+m]≤n*-[1+o] = neg-cancel-≤ (*-cancelʳ-≤-pos (- n) (- o) m (begin
- n * +[1+ m ] ≡˘⟨ neg-distribˡ-* n +[1+ m ] ⟩
-(n * +[1+ m ]) ≡⟨ neg-distribʳ-* n +[1+ m ] ⟩
n * -[1+ m ] ≤⟨ n*-[1+m]≤n*-[1+o] ⟩
o * -[1+ m ] ≡˘⟨ neg-distribʳ-* o +[1+ m ] ⟩
-(o * +[1+ m ]) ≡⟨ neg-distribˡ-* o +[1+ m ] ⟩
- o * +[1+ m ] ∎))
where open ≤-Reasoning
*-monoˡ-≤-nonPos : ∀ m → NonPositive m → (m *_) Preserves _≤_ ⟶ _≥_
*-monoˡ-≤-nonPos +0 m≤0 {n} {o} n≤o = +≤+ z≤n
*-monoˡ-≤-nonPos -[1+ m ] m≤0 {n} {o} n≤o = begin
-[1+ m ] * o ≡⟨⟩
-(+ suc m) * o ≡˘⟨ neg-distribˡ-* +[1+ m ] o ⟩
-(+ suc m * o) ≡⟨ neg-distribʳ-* +[1+ m ] o ⟩
+ suc m * - o ≤⟨ *-monoˡ-≤-pos m (neg-mono-≤ n≤o) ⟩
+ suc m * - n ≡˘⟨ neg-distribʳ-* +[1+ m ] n ⟩
-(+ suc m * n) ≡⟨ neg-distribˡ-* +[1+ m ] n ⟩
-(+ suc m) * n ≡⟨⟩
-[1+ m ] * n ∎
where open ≤-Reasoning
*-monoʳ-≤-nonPos : ∀ m → NonPositive m → (_* m) Preserves _≤_ ⟶ _≥_
*-monoʳ-≤-nonPos m m≤0 {n} {o} n≤o = begin
o * m ≡˘⟨ *-comm m o ⟩
m * o ≤⟨ *-monoˡ-≤-nonPos m m≤0 n≤o ⟩
m * n ≡⟨ *-comm m n ⟩
n * m ∎
where open ≤-Reasoning
*-monoˡ-≤-neg : ∀ m → (-[1+ m ] *_) Preserves _≤_ ⟶ _≥_
*-monoˡ-≤-neg m = *-monoˡ-≤-nonPos -[1+ m ] tt
*-monoʳ-≤-neg : ∀ m → (_* -[1+ m ]) Preserves _≤_ ⟶ _≥_
*-monoʳ-≤-neg m = *-monoʳ-≤-nonPos -[1+ m ] tt
*-monoˡ-<-pos : ∀ n → (+[1+ n ] *_) Preserves _<_ ⟶ _<_
*-monoˡ-<-pos n {+ m} {+ o} (+<+ m<o) = +◃-mono-< (ℕₚ.+-mono-<-≤ m<o (ℕₚ.*-monoʳ-≤ n (ℕₚ.<⇒≤ m<o)))
*-monoˡ-<-pos n { -[1+ m ]} {+ o} leq = -◃<+◃ _ (suc n ℕ.* o)
*-monoˡ-<-pos n { -[1+ m ]} { -[1+ o ]} (-<- o<m) = -<- (ℕₚ.+-mono-<-≤ o<m (ℕₚ.*-monoʳ-≤ n (ℕₚ.<⇒≤ (s≤s o<m))))
*-monoʳ-<-pos : ∀ n → (_* +[1+ n ]) Preserves _<_ ⟶ _<_
*-monoʳ-<-pos n {m} {o} rewrite *-comm m +[1+ n ] | *-comm o +[1+ n ]
= *-monoˡ-<-pos n
*-cancelˡ-<-nonNeg : ∀ n {i j} → + n * i < + n * j → i < j
*-cancelˡ-<-nonNeg n {+ i} {+ j} leq = +<+ (ℕₚ.*-cancelˡ-< n (+◃-cancel-< leq))
*-cancelˡ-<-nonNeg n {+ i} { -[1+ j ]} leq = contradiction leq +◃≮-◃
*-cancelˡ-<-nonNeg n { -[1+ i ]} {+ j} leq = -<+
*-cancelˡ-<-nonNeg n { -[1+ i ]} { -[1+ j ]} leq = -<- (ℕₚ.≤-pred (ℕₚ.*-cancelˡ-< n (neg◃-cancel-< leq)))
*-cancelʳ-<-nonNeg : ∀ {i j} n → i * + n < j * + n → i < j
*-cancelʳ-<-nonNeg {i} {j} n rewrite *-comm i (+ n) | *-comm j (+ n)
= *-cancelˡ-<-nonNeg n
*-monoˡ-<-neg : ∀ n → (-[1+ n ] *_) Preserves _<_ ⟶ _>_
*-monoˡ-<-neg n {m} {o} m<o = begin-strict
-[1+ n ] * o ≡˘⟨ neg-distribˡ-* +[1+ n ] o ⟩
-(+ suc n * o) ≡⟨ neg-distribʳ-* +[1+ n ] o ⟩
(+ suc n * - o) <⟨ *-monoˡ-<-pos n (neg-mono-< m<o) ⟩
+ suc n * - m ≡˘⟨ neg-distribʳ-* +[1+ n ] m ⟩
- (+ suc n * m) ≡⟨ neg-distribˡ-* +[1+ n ] m ⟩
-[1+ n ] * m ∎
where open ≤-Reasoning
*-monoʳ-<-neg : ∀ n → (_* -[1+ n ]) Preserves _<_ ⟶ _>_
*-monoʳ-<-neg n {m} {o} m<o = begin-strict
o * -[1+ n ] ≡˘⟨ *-comm -[1+ n ] o ⟩
-[1+ n ] * o <⟨ *-monoˡ-<-neg n m<o ⟩
-[1+ n ] * m ≡⟨ *-comm -[1+ n ] m ⟩
m * -[1+ n ] ∎
where open ≤-Reasoning
*-cancelˡ-<-neg : ∀ n {i j} → -[1+ n ] * i < -[1+ n ] * j → i > j
*-cancelˡ-<-neg n {i} {j} -[1+n]i<-[1+n]j = neg-cancel-< (*-cancelˡ-<-nonNeg (suc n) (begin-strict
+[1+ n ] * - i ≡˘⟨ neg-distribʳ-* +[1+ n ] i ⟩
-(+[1+ n ] * i) ≡⟨ neg-distribˡ-* +[1+ n ] i ⟩
-[1+ n ] * i <⟨ -[1+n]i<-[1+n]j ⟩
-[1+ n ] * j ≡˘⟨ neg-distribˡ-* +[1+ n ] j ⟩
-(+[1+ n ] * j) ≡⟨ neg-distribʳ-* +[1+ n ] j ⟩
+[1+ n ] * - j ∎))
where open ≤-Reasoning
*-cancelˡ-<-nonPos : ∀ n {i j} → NonPositive n → n * i < n * j → i > j
*-cancelˡ-<-nonPos +0 {i} {j} n≤0 (+<+ ())
*-cancelˡ-<-nonPos -[1+ n ] {i} {j} n≤0 ni<nj = *-cancelˡ-<-neg n ni<nj
*-cancelʳ-<-neg : ∀ n {i j} → i * -[1+ n ] < j * -[1+ n ] → i > j
*-cancelʳ-<-neg n {i} {j} i[-[1+n]]<j[-[1+n]] = *-cancelˡ-<-neg n (begin-strict
-[1+ n ] * i ≡⟨ *-comm -[1+ n ] i ⟩
i * -[1+ n ] <⟨ i[-[1+n]]<j[-[1+n]] ⟩
j * -[1+ n ] ≡˘⟨ *-comm -[1+ n ] j ⟩
-[1+ n ] * j ∎)
where open ≤-Reasoning
*-cancelʳ-<-nonPos : ∀ n {i j} → NonPositive n → i * n < j * n → i > j
*-cancelʳ-<-nonPos -[1+ n ] {i} {j} n≤0 in<jn = *-cancelʳ-<-neg n in<jn
*-cancelʳ-<-nonPos +0 {i} {j} n≤0 in<jn = contradiction (begin-strict
+ zero ≡˘⟨ *-zeroʳ i ⟩
i * + zero <⟨ in<jn ⟩
j * + zero ≡⟨ *-zeroʳ j ⟩
+ zero ∎) n≮n
where open ≤-Reasoning
∣m*n∣≡∣m∣*∣n∣ : ∀ m n → ∣ m * n ∣ ≡ ∣ m ∣ ℕ.* ∣ n ∣
∣m*n∣≡∣m∣*∣n∣ +[1+ m ] +[1+ n ] = refl
∣m*n∣≡∣m∣*∣n∣ +[1+ m ] (+ zero) = begin
∣ +[1+ m ] * + zero ∣ ≡⟨ cong ∣_∣ (*-zeroʳ +[1+ m ]) ⟩
∣ + zero ∣ ≡˘⟨ ℕₚ.*-zeroʳ m ⟩
∣ +[1+ m ] ∣ ℕ.* ∣ + zero ∣ ∎
where open ≡-Reasoning
∣m*n∣≡∣m∣*∣n∣ +[1+ m ] -[1+ n ] = refl
∣m*n∣≡∣m∣*∣n∣ (+ zero) +[1+ n ] = refl
∣m*n∣≡∣m∣*∣n∣ (+ zero) (+ zero) = refl
∣m*n∣≡∣m∣*∣n∣ (+ zero) -[1+ n ] = refl
∣m*n∣≡∣m∣*∣n∣ -[1+ m ] +[1+ n ] = refl
∣m*n∣≡∣m∣*∣n∣ -[1+ m ] (+ zero) = begin
∣ -[1+ m ] * + zero ∣ ≡⟨ cong ∣_∣ (*-zeroʳ -[1+ m ]) ⟩
∣ + zero ∣ ≡˘⟨ ℕₚ.*-zeroʳ m ⟩
∣ -[1+ m ] ∣ ℕ.* ∣ + zero ∣ ∎
where open ≡-Reasoning
∣m*n∣≡∣m∣*∣n∣ -[1+ m ] -[1+ n ] = refl
i≤j⇒i⊓j≡i : ∀ {i j} → i ≤ j → i ⊓ j ≡ i
i≤j⇒i⊓j≡i (-≤- i≥j) = cong -[1+_] (ℕₚ.m≤n⇒n⊔m≡n i≥j)
i≤j⇒i⊓j≡i -≤+ = refl
i≤j⇒i⊓j≡i (+≤+ i≤j) = cong +_ (ℕₚ.m≤n⇒m⊓n≡m i≤j)
i≥j⇒i⊓j≡j : ∀ {i j} → i ≥ j → i ⊓ j ≡ j
i≥j⇒i⊓j≡j (-≤- i≥j) = cong -[1+_] (ℕₚ.m≤n⇒m⊔n≡n i≥j)
i≥j⇒i⊓j≡j -≤+ = refl
i≥j⇒i⊓j≡j (+≤+ i≤j) = cong +_ (ℕₚ.m≥n⇒m⊓n≡n i≤j)
i≤j⇒i⊔j≡j : ∀ {i j} → i ≤ j → i ⊔ j ≡ j
i≤j⇒i⊔j≡j (-≤- i≥j) = cong -[1+_] (ℕₚ.m≤n⇒n⊓m≡m i≥j)
i≤j⇒i⊔j≡j -≤+ = refl
i≤j⇒i⊔j≡j (+≤+ i≤j) = cong +_ (ℕₚ.m≤n⇒m⊔n≡n i≤j)
i≥j⇒i⊔j≡i : ∀ {i j} → i ≥ j → i ⊔ j ≡ i
i≥j⇒i⊔j≡i (-≤- i≥j) = cong -[1+_] (ℕₚ.m≤n⇒m⊓n≡m i≥j)
i≥j⇒i⊔j≡i -≤+ = refl
i≥j⇒i⊔j≡i (+≤+ i≤j) = cong +_ (ℕₚ.m≥n⇒m⊔n≡m i≤j)
⊓-operator : MinOperator ≤-totalPreorder
⊓-operator = record
{ x≤y⇒x⊓y≈x = i≤j⇒i⊓j≡i
; x≥y⇒x⊓y≈y = i≥j⇒i⊓j≡j
}
⊔-operator : MaxOperator ≤-totalPreorder
⊔-operator = record
{ x≤y⇒x⊔y≈y = i≤j⇒i⊔j≡j
; x≥y⇒x⊔y≈x = i≥j⇒i⊔j≡i
}
private
module ⊓-⊔-properties = MinMaxOp ⊓-operator ⊔-operator
open ⊓-⊔-properties public
using
( ⊓-idem
; ⊓-sel
; ⊓-assoc
; ⊓-comm
; ⊔-idem
; ⊔-sel
; ⊔-assoc
; ⊔-comm
; ⊓-distribˡ-⊔
; ⊓-distribʳ-⊔
; ⊓-distrib-⊔
; ⊔-distribˡ-⊓
; ⊔-distribʳ-⊓
; ⊔-distrib-⊓
; ⊓-absorbs-⊔
; ⊔-absorbs-⊓
; ⊔-⊓-absorptive
; ⊓-⊔-absorptive
; ⊓-isMagma
; ⊓-isSemigroup
; ⊓-isCommutativeSemigroup
; ⊓-isBand
; ⊓-isSemilattice
; ⊓-isSelectiveMagma
; ⊔-isMagma
; ⊔-isSemigroup
; ⊔-isCommutativeSemigroup
; ⊔-isBand
; ⊔-isSemilattice
; ⊔-isSelectiveMagma
; ⊔-⊓-isLattice
; ⊓-⊔-isLattice
; ⊔-⊓-isDistributiveLattice
; ⊓-⊔-isDistributiveLattice
; ⊓-magma
; ⊓-semigroup
; ⊓-band
; ⊓-commutativeSemigroup
; ⊓-semilattice
; ⊓-selectiveMagma
; ⊔-magma
; ⊔-semigroup
; ⊔-band
; ⊔-commutativeSemigroup
; ⊔-semilattice
; ⊔-selectiveMagma
; ⊔-⊓-lattice
; ⊓-⊔-lattice
; ⊔-⊓-distributiveLattice
; ⊓-⊔-distributiveLattice
; ⊓-glb
; ⊓-triangulate
; ⊓-mono-≤
; ⊓-monoˡ-≤
; ⊓-monoʳ-≤
; ⊔-lub
; ⊔-triangulate
; ⊔-mono-≤
; ⊔-monoˡ-≤
; ⊔-monoʳ-≤
)
renaming
( x⊓y≈y⇒y≤x to i⊓j≡j⇒j≤i
; x⊓y≈x⇒x≤y to i⊓j≡i⇒i≤j
; x⊓y≤x to i⊓j≤i
; x⊓y≤y to i⊓j≤j
; x≤y⇒x⊓z≤y to i≤j⇒i⊓k≤j
; x≤y⇒z⊓x≤y to i≤j⇒k⊓i≤j
; x≤y⊓z⇒x≤y to i≤j⊓k⇒i≤j
; x≤y⊓z⇒x≤z to i≤j⊓k⇒i≤k
; x⊔y≈y⇒x≤y to i⊔j≡j⇒i≤j
; x⊔y≈x⇒y≤x to i⊔j≡i⇒j≤i
; x≤x⊔y to i≤i⊔j
; x≤y⊔x to i≤j⊔i
; x≤y⇒x≤y⊔z to i≤j⇒i≤j⊔k
; x≤y⇒x≤z⊔y to i≤j⇒i≤k⊔j
; x⊔y≤z⇒x≤z to i⊔j≤k⇒i≤k
; x⊔y≤z⇒y≤z to i⊔j≤k⇒j≤k
; x⊓y≤x⊔y to i⊓j≤i⊔j
)
mono-≤-distrib-⊔ : ∀ {f} → f Preserves _≤_ ⟶ _≤_ →
∀ m n → f (m ⊔ n) ≡ f m ⊔ f n
mono-≤-distrib-⊔ {f} = ⊓-⊔-properties.mono-≤-distrib-⊔ (cong f)
mono-≤-distrib-⊓ : ∀ {f} → f Preserves _≤_ ⟶ _≤_ →
∀ m n → f (m ⊓ n) ≡ f m ⊓ f n
mono-≤-distrib-⊓ {f} = ⊓-⊔-properties.mono-≤-distrib-⊓ (cong f)
antimono-≤-distrib-⊓ : ∀ {f} → f Preserves _≤_ ⟶ _≥_ →
∀ m n → f (m ⊓ n) ≡ f m ⊔ f n
antimono-≤-distrib-⊓ {f} = ⊓-⊔-properties.antimono-≤-distrib-⊓ (cong f)
antimono-≤-distrib-⊔ : ∀ {f} → f Preserves _≤_ ⟶ _≥_ →
∀ m n → f (m ⊔ n) ≡ f m ⊓ f n
antimono-≤-distrib-⊔ {f} = ⊓-⊔-properties.antimono-≤-distrib-⊔ (cong f)
mono-<-distrib-⊓ : ∀ f → f Preserves _<_ ⟶ _<_ → ∀ m n → f (m ⊓ n) ≡ f m ⊓ f n
mono-<-distrib-⊓ f f-mono-< m n with <-cmp m n
... | tri< m<n _ _ = trans (cong f (i≤j⇒i⊓j≡i (<⇒≤ m<n))) (sym (i≤j⇒i⊓j≡i (<⇒≤ (f-mono-< m<n))))
... | tri≈ _ refl _ = trans (cong f (i≤j⇒i⊓j≡i ≤-refl)) (sym (i≤j⇒i⊓j≡i ≤-refl))
... | tri> _ _ m>n = trans (cong f (i≥j⇒i⊓j≡j (<⇒≤ m>n))) (sym (i≥j⇒i⊓j≡j (<⇒≤ (f-mono-< m>n))))
mono-<-distrib-⊔ : ∀ f → f Preserves _<_ ⟶ _<_ → ∀ m n → f (m ⊔ n) ≡ f m ⊔ f n
mono-<-distrib-⊔ f f-mono-< m n with <-cmp m n
... | tri< m<n _ _ = trans (cong f (i≤j⇒i⊔j≡j (<⇒≤ m<n))) (sym (i≤j⇒i⊔j≡j (<⇒≤ (f-mono-< m<n))))
... | tri≈ _ refl _ = trans (cong f (i≤j⇒i⊔j≡j ≤-refl)) (sym (i≤j⇒i⊔j≡j ≤-refl))
... | tri> _ _ m>n = trans (cong f (i≥j⇒i⊔j≡i (<⇒≤ m>n))) (sym (i≥j⇒i⊔j≡i (<⇒≤ (f-mono-< m>n))))
antimono-<-distrib-⊔ : ∀ f → f Preserves _<_ ⟶ _>_ → ∀ m n → f (m ⊔ n) ≡ f m ⊓ f n
antimono-<-distrib-⊔ f f-mono-< m n with <-cmp m n
... | tri< m<n _ _ = trans (cong f (i≤j⇒i⊔j≡j (<⇒≤ m<n))) (sym (i≥j⇒i⊓j≡j (<⇒≤ (f-mono-< m<n))))
... | tri≈ _ refl _ = trans (cong f (i≤j⇒i⊔j≡j ≤-refl)) (sym (i≥j⇒i⊓j≡j ≤-refl))
... | tri> _ _ m>n = trans (cong f (i≥j⇒i⊔j≡i (<⇒≤ m>n))) (sym (i≤j⇒i⊓j≡i (<⇒≤ (f-mono-< m>n))))
antimono-<-distrib-⊓ : ∀ f → f Preserves _<_ ⟶ _>_ → ∀ m n → f (m ⊓ n) ≡ f m ⊔ f n
antimono-<-distrib-⊓ f f-mono-< m n with <-cmp m n
... | tri< m<n _ _ = trans (cong f (i≤j⇒i⊓j≡i (<⇒≤ m<n))) (sym (i≥j⇒i⊔j≡i (<⇒≤ (f-mono-< m<n))))
... | tri≈ _ refl _ = trans (cong f (i≤j⇒i⊓j≡i ≤-refl)) (sym (i≥j⇒i⊔j≡i ≤-refl))
... | tri> _ _ m>n = trans (cong f (i≥j⇒i⊓j≡j (<⇒≤ m>n))) (sym (i≤j⇒i⊔j≡j (<⇒≤ (f-mono-< m>n))))
neg-distrib-⊔-⊓ : ∀ m n → - (m ⊔ n) ≡ - m ⊓ - n
neg-distrib-⊔-⊓ = antimono-<-distrib-⊔ -_ neg-mono-<
neg-distrib-⊓-⊔ : ∀ m n → - (m ⊓ n) ≡ - m ⊔ - n
neg-distrib-⊓-⊔ = antimono-<-distrib-⊓ -_ neg-mono-<
*-distribˡ-⊓-nonNeg : ∀ m n o → + m * (n ⊓ o) ≡ (+ m * n) ⊓ (+ m * o)
*-distribˡ-⊓-nonNeg zero _ _ = refl
*-distribˡ-⊓-nonNeg (suc m) = mono-≤-distrib-⊓ (*-monoˡ-≤-pos m)
*-distribʳ-⊓-nonNeg : ∀ m n o → (n ⊓ o) * + m ≡ (n * + m) ⊓ (o * + m)
*-distribʳ-⊓-nonNeg (suc m) = mono-≤-distrib-⊓ (*-monoʳ-≤-pos m)
*-distribʳ-⊓-nonNeg zero n o = begin-equality
(n ⊓ o) * + zero ≡⟨ *-zeroʳ (n ⊓ o) ⟩
+ zero ≡⟨⟩
+ zero ⊓ + zero ≡˘⟨ cong₂ _⊓_ (*-zeroʳ n) (*-zeroʳ o) ⟩
(n * + zero) ⊓ (o * + zero) ∎
where open ≤-Reasoning
*-distribˡ-⊓-nonPos : ∀ m → NonPositive m → ∀ n o → m * (n ⊓ o) ≡ (m * n) ⊔ (m * o)
*-distribˡ-⊓-nonPos +0 m≤0 = λ _ _ → refl
*-distribˡ-⊓-nonPos -[1+ m ] m≤0 = antimono-≤-distrib-⊓ (*-monoˡ-≤-neg m)
*-distribʳ-⊓-nonPos : ∀ m → NonPositive m → ∀ n o → (n ⊓ o) * m ≡ (n * m) ⊔ (o * m)
*-distribʳ-⊓-nonPos m m≤0 n o = begin-equality
(n ⊓ o) * m ≡˘⟨ *-comm m (n ⊓ o) ⟩
m * (n ⊓ o) ≡⟨ *-distribˡ-⊓-nonPos m m≤0 n o ⟩
(m * n) ⊔ (m * o) ≡⟨ cong₂ _⊔_ (*-comm m n) (*-comm m o) ⟩
(n * m) ⊔ (o * m) ∎
where open ≤-Reasoning
*-distribˡ-⊔-nonNeg : ∀ m n o → + m * (n ⊔ o) ≡ (+ m * n) ⊔ (+ m * o)
*-distribˡ-⊔-nonNeg zero = λ _ _ → refl
*-distribˡ-⊔-nonNeg (suc m) = mono-≤-distrib-⊔ (*-monoˡ-≤-pos m)
*-distribʳ-⊔-nonNeg : ∀ m n o → (n ⊔ o) * + m ≡ (n * + m) ⊔ (o * + m)
*-distribʳ-⊔-nonNeg m n o = begin-equality
(n ⊔ o) * + m ≡˘⟨ *-comm (+ m) (n ⊔ o) ⟩
+ m * (n ⊔ o) ≡⟨ *-distribˡ-⊔-nonNeg m n o ⟩
(+ m * n) ⊔ (+ m * o) ≡⟨ cong₂ _⊔_ (*-comm (+ m) n) (*-comm (+ m) o) ⟩
(n * + m) ⊔ (o * + m) ∎
where open ≤-Reasoning
*-distribˡ-⊔-nonPos : ∀ m → NonPositive m → ∀ n o → m * (n ⊔ o) ≡ (m * n) ⊓ (m * o)
*-distribˡ-⊔-nonPos +0 m≤0 = λ _ _ → refl
*-distribˡ-⊔-nonPos -[1+ m ] m≤0 = antimono-≤-distrib-⊔ (*-monoˡ-≤-neg m)
*-distribʳ-⊔-nonPos : ∀ m → NonPositive m → ∀ n o → (n ⊔ o) * m ≡ (n * m) ⊓ (o * m)
*-distribʳ-⊔-nonPos m m≤0 n o = begin-equality
(n ⊔ o) * m ≡˘⟨ *-comm m (n ⊔ o) ⟩
m * (n ⊔ o) ≡⟨ *-distribˡ-⊔-nonPos m m≤0 n o ⟩
(m * n) ⊓ (m * o) ≡⟨ cong₂ _⊓_ (*-comm m n) (*-comm m o) ⟩
(n * m) ⊓ (o * m) ∎
where open ≤-Reasoning
inverseˡ = +-inverseˡ
{-# WARNING_ON_USAGE inverseˡ
"Warning: inverseˡ was deprecated in v0.15.
Please use +-inverseˡ instead."
#-}
inverseʳ = +-inverseʳ
{-# WARNING_ON_USAGE inverseʳ
"Warning: inverseʳ was deprecated in v0.15.
Please use +-inverseʳ instead."
#-}
distribʳ = *-distribʳ-+
{-# WARNING_ON_USAGE distribʳ
"Warning: distribʳ was deprecated in v0.15.
Please use *-distribʳ-+ instead."
#-}
isCommutativeSemiring = +-*-isCommutativeSemiring
{-# WARNING_ON_USAGE isCommutativeSemiring
"Warning: isCommutativeSemiring was deprecated in v0.15.
Please use +-*-isCommutativeSemiring instead."
#-}
commutativeRing = +-*-commutativeRing
{-# WARNING_ON_USAGE commutativeRing
"Warning: commutativeRing was deprecated in v0.15.
Please use +-*-commutativeRing instead."
#-}
*-+-right-mono = *-monoʳ-≤-pos
{-# WARNING_ON_USAGE *-+-right-mono
"Warning: *-+-right-mono was deprecated in v0.15.
Please use *-monoʳ-≤-pos instead."
#-}
cancel-*-+-right-≤ = *-cancelʳ-≤-pos
{-# WARNING_ON_USAGE cancel-*-+-right-≤
"Warning: cancel-*-+-right-≤ was deprecated in v0.15.
Please use *-cancelʳ-≤-pos instead."
#-}
cancel-*-right = *-cancelʳ-≡
{-# WARNING_ON_USAGE cancel-*-right
"Warning: cancel-*-right was deprecated in v0.15.
Please use *-cancelʳ-≡ instead."
#-}
doubleNeg = neg-involutive
{-# WARNING_ON_USAGE doubleNeg
"Warning: doubleNeg was deprecated in v0.15.
Please use neg-involutive instead."
#-}
-‿involutive = neg-involutive
{-# WARNING_ON_USAGE -‿involutive
"Warning: -‿involutive was deprecated in v0.15.
Please use neg-involutive instead."
#-}
+-⊖-left-cancel = +-cancelˡ-⊖
{-# WARNING_ON_USAGE +-⊖-left-cancel
"Warning: +-⊖-left-cancel was deprecated in v0.15.
Please use +-cancelˡ-⊖ instead."
#-}
≰→> = ≰⇒>
{-# WARNING_ON_USAGE ≰→>
"Warning: ≰→> was deprecated in v1.0.
Please use ≰⇒> instead."
#-}
≤-irrelevance = ≤-irrelevant
{-# WARNING_ON_USAGE ≤-irrelevance
"Warning: ≤-irrelevance was deprecated in v1.0.
Please use ≤-irrelevant instead."
#-}
<-irrelevance = <-irrelevant
{-# WARNING_ON_USAGE <-irrelevance
"Warning: <-irrelevance was deprecated in v1.0.
Please use <-irrelevant instead."
#-}
-<′+ : ∀ {m n} → -[1+ m ] <′ + n
-<′+ {0} = +≤+ z≤n
-<′+ {suc _} = -≤+
{-# WARNING_ON_USAGE -<′+
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
<′-irrefl : Irreflexive _≡_ _<′_
<′-irrefl { + n} refl (+≤+ 1+n≤n) = ℕₚ.<-irrefl refl 1+n≤n
<′-irrefl { -[1+ suc n ]} refl (-≤- 1+n≤n) = ℕₚ.<-irrefl refl 1+n≤n
{-# WARNING_ON_USAGE <′-irrefl
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
>′-irrefl : Irreflexive _≡_ _>′_
>′-irrefl = <′-irrefl ∘ sym
{-# WARNING_ON_USAGE >′-irrefl
"Warning: _>′_ was deprecated in v1.1.
Please use _>_ instead."
#-}
<′-asym : Asymmetric _<′_
<′-asym {+ n} {+ m} (+≤+ n<m) (+≤+ m<n) = ℕₚ.<-asym n<m m<n
<′-asym { -[1+ suc n ]} { -[1+ suc m ]} (-≤- n<m) (-≤- m<n) = ℕₚ.<-asym n<m m<n
{-# WARNING_ON_USAGE <′-asym
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
≤-<′-trans : Trans _≤_ _<′_ _<′_
≤-<′-trans { -[1+ m ]} {+ n} {+ p} -≤+ (+≤+ 1+n≤p) = -<′+ {m} {p}
≤-<′-trans {+ m} {+ n} {+ p} (+≤+ m≤n) (+≤+ 1+n≤p) = +≤+ (ℕₚ.≤-trans (ℕ.s≤s m≤n) 1+n≤p)
≤-<′-trans { -[1+ m ]} { -[1+ n ]} (-≤- n≤m) n<p = ≤-trans (⊖-monoʳ-≥-≤ 1 (ℕ.s≤s n≤m)) n<p
{-# WARNING_ON_USAGE ≤-<′-trans
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
<′-≤-trans : Trans _<′_ _≤_ _<′_
<′-≤-trans = ≤-trans
{-# WARNING_ON_USAGE <′-≤-trans
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
<′⇒≤ : ∀ {m n} → m <′ n → m ≤ n
<′⇒≤ m<n = ≤-trans (n≤1+n _) m<n
{-# WARNING_ON_USAGE <′⇒≤
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
<′-trans : Transitive _<′_
<′-trans {m} {n} {p} m<n n<p = ≤-<′-trans {m} {n} {p} (<′⇒≤ m<n) n<p
{-# WARNING_ON_USAGE <′-trans
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
<′-cmp : Trichotomous _≡_ _<′_
<′-cmp (+ m) (+ n) with ℕₚ.<-cmp m n
... | tri< m<n m≢n m≯n =
tri< (+≤+ m<n) (m≢n ∘ +-injective) (m≯n ∘ drop‿+≤+)
... | tri≈ m≮n m≡n m≯n =
tri≈ (m≮n ∘ drop‿+≤+) (cong (+_) m≡n) (m≯n ∘ drop‿+≤+)
... | tri> m≮n m≢n m>n =
tri> (m≮n ∘ drop‿+≤+) (m≢n ∘ +-injective) (+≤+ m>n)
<′-cmp (+_ m) -[1+ 0 ] = tri> (λ()) (λ()) (+≤+ z≤n)
<′-cmp (+_ m) -[1+ suc n ] = tri> (λ()) (λ()) -≤+
<′-cmp -[1+ 0 ] (+ n) = tri< (+≤+ z≤n) (λ()) (λ())
<′-cmp -[1+ suc m ] (+ n) = tri< -≤+ (λ()) (λ())
<′-cmp -[1+ 0 ] -[1+ 0 ] = tri≈ (λ()) refl (λ())
<′-cmp -[1+ 0 ] -[1+ suc n ] = tri> (λ()) (λ()) (-≤- z≤n)
<′-cmp -[1+ suc m ] -[1+ 0 ] = tri< (-≤- z≤n) (λ()) (λ())
<′-cmp -[1+ suc m ] -[1+ suc n ] with ℕₚ.<-cmp (suc m) (suc n)
... | tri< m<n m≢n m≯n =
tri> (m≯n ∘ s≤s ∘ drop‿-≤-) (m≢n ∘ -[1+-injective) (-≤- (ℕₚ.≤-pred m<n))
... | tri≈ m≮n m≡n m≯n =
tri≈ (m≯n ∘ ℕ.s≤s ∘ drop‿-≤-) (cong -[1+_] m≡n) (m≮n ∘ ℕ.s≤s ∘ drop‿-≤-)
... | tri> m≮n m≢n m>n =
tri< (-≤- (ℕₚ.≤-pred m>n)) (m≢n ∘ -[1+-injective) (m≮n ∘ s≤s ∘ drop‿-≤-)
{-# WARNING_ON_USAGE <′-cmp
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
<′-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<′_
<′-isStrictPartialOrder = record
{ isEquivalence = isEquivalence
; irrefl = <′-irrefl
; trans = λ {i} → <′-trans {i}
; <-resp-≈ = (λ {x} → subst (x <′_)) , subst (_<′ _)
}
{-# WARNING_ON_USAGE <′-isStrictPartialOrder
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
<′-strictPartialOrder : StrictPartialOrder _ _ _
<′-strictPartialOrder = record
{ isStrictPartialOrder = <′-isStrictPartialOrder
}
{-# WARNING_ON_USAGE <′-strictPartialOrder
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
<′-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<′_
<′-isStrictTotalOrder = record
{ isEquivalence = isEquivalence
; trans = λ {i} → <′-trans {i}
; compare = <′-cmp
}
{-# WARNING_ON_USAGE <′-isStrictTotalOrder
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
<′-strictTotalOrder : StrictTotalOrder _ _ _
<′-strictTotalOrder = record
{ isStrictTotalOrder = <′-isStrictTotalOrder
}
{-# WARNING_ON_USAGE <′-strictTotalOrder
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
n≮′n : ∀ {n} → n ≮′ n
n≮′n {+ n} (+≤+ n<n) = contradiction n<n ℕₚ.1+n≰n
n≮′n { -[1+ suc n ]} (-≤- n<n) = contradiction n<n ℕₚ.1+n≰n
{-# WARNING_ON_USAGE n≮′n
"Warning: n≮′n was deprecated in v1.1.
Please use n≮n instead."
#-}
>′⇒≰′ : ∀ {x y} → x >′ y → x ≰ y
>′⇒≰′ {y = y} x>y x≤y = contradiction (<′-≤-trans {i = y} x>y x≤y) n≮′n
{-# WARNING_ON_USAGE >′⇒≰′
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
≰⇒>′ : ∀ {x y} → x ≰ y → x >′ y
≰⇒>′ {+ m} {+ n} m≰n = +≤+ (ℕₚ.≰⇒> (m≰n ∘ +≤+))
≰⇒>′ {+ m} { -[1+ n ]} _ = -<′+ {n} {m}
≰⇒>′ { -[1+ m ]} {+ _} m≰n = contradiction -≤+ m≰n
≰⇒>′ { -[1+ 0 ]} { -[1+ 0 ]} m≰n = contradiction ≤-refl m≰n
≰⇒>′ { -[1+ suc _ ]} { -[1+ 0 ]} m≰n = contradiction (-≤- z≤n) m≰n
≰⇒>′ { -[1+ m ]} { -[1+ suc n ]} m≰n with m ℕ.≤? n
... | yes m≤n = -≤- m≤n
... | no m≰n′ = contradiction (-≤- (ℕₚ.≰⇒> m≰n′)) m≰n
{-# WARNING_ON_USAGE ≰⇒>′
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
<′-irrelevant : Irrelevant _<′_
<′-irrelevant = ≤-irrelevant
{-# WARNING_ON_USAGE <′-irrelevant
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
+-monoˡ-<′ : ∀ n → (_+ n) Preserves _<′_ ⟶ _<′_
+-monoˡ-<′ n {i} {j} i<j
rewrite sym (+-assoc (+ 1) i n)
= +-monoˡ-≤ n i<j
{-# WARNING_ON_USAGE +-monoˡ-<′
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
+-monoʳ-<′ : ∀ n → (_+_ n) Preserves _<′_ ⟶ _<′_
+-monoʳ-<′ n {i} {j} i<j
rewrite +-comm n i
| +-comm n j
= +-monoˡ-<′ n {i} {j} i<j
{-# WARNING_ON_USAGE +-monoʳ-<′
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
+-mono-<′ : _+_ Preserves₂ _<′_ ⟶ _<′_ ⟶ _<′_
+-mono-<′ {m} {n} {i} {j} m<n i<j = begin
sucℤ (m + i) ≤⟨ suc-mono {m + i} (<′⇒≤ (+-monoˡ-<′ i {m} {n} m<n)) ⟩
sucℤ (n + i) ≤⟨ +-monoʳ-<′ n i<j ⟩
n + j ∎
where open ≤-Reasoning
{-# WARNING_ON_USAGE +-mono-<′
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
+-mono-≤-<′ : _+_ Preserves₂ _≤_ ⟶ _<′_ ⟶ _<′_
+-mono-≤-<′ {m} {n} {i} {j} m≤n i<j = ≤-<′-trans (+-monoˡ-≤ i m≤n) (+-monoʳ-<′ n i<j)
{-# WARNING_ON_USAGE +-mono-≤-<′
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
+-mono-<′-≤ : _+_ Preserves₂ _<′_ ⟶ _≤_ ⟶ _<′_
+-mono-<′-≤ {m} {n} {i} {j} m<n i≤j =
<′-≤-trans {m + i} {n + i} {n + j} (+-monoˡ-<′ i {m} {n} m<n) (+-monoʳ-≤ n i≤j)
{-# WARNING_ON_USAGE +-mono-<′-≤
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
m≤pred[n]⇒m<′n : ∀ {m n} → m ≤ pred n → m <′ n
m≤pred[n]⇒m<′n {m} {n} m≤predn = begin
sucℤ m ≤⟨ +-monoʳ-≤ (+ 1) m≤predn ⟩
+ 1 + pred n ≡⟨ sym (+-assoc (+ 1) -[1+ 0 ] n) ⟩
(+ 1 + -[1+ 0 ]) + n ≡⟨ cong (_+ n) (+-inverseʳ (+ 1)) ⟩
+ 0 + n ≡⟨ +-identityˡ n ⟩
n ∎
where open ≤-Reasoning
{-# WARNING_ON_USAGE m≤pred[n]⇒m<′n
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
m<′n⇒m≤pred[n] : ∀ {m n} → m <′ n → m ≤ pred n
m<′n⇒m≤pred[n] {m} {n} m<n = begin
m ≡⟨ sym (pred-suc m) ⟩
pred (sucℤ m) ≤⟨ pred-mono m<n ⟩
pred n ∎
where open ≤-Reasoning
{-# WARNING_ON_USAGE m<′n⇒m≤pred[n]
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
[1+m]*n≡n+m*n = suc-*
{-# WARNING_ON_USAGE [1+m]*n≡n+m*n
"Warning: [1+m]*n≡n+m*n was deprecated in v1.2.
Please use suc-* instead."
#-}
neg-mono-<-> = neg-mono-<
{-# WARNING_ON_USAGE neg-mono-<->
"Warning: neg-mono-<-> was deprecated in v1.5.
Please use neg-mono-< instead."
#-}
neg-mono-≤-≥ = neg-mono-≤
{-# WARNING_ON_USAGE neg-mono-≤-≥
"Warning: neg-mono-≤-≥ was deprecated in v1.5.
Please use neg-mono-≤ instead."
#-}
*-monoʳ-≤-non-neg = *-monoʳ-≤-nonNeg
{-# WARNING_ON_USAGE *-monoʳ-≤-non-neg
"Warning: *-monoʳ-≤-non-neg was deprecated in v1.5.
Please use *-monoʳ-≤-nonNeg instead."
#-}
*-monoˡ-≤-non-neg = *-monoˡ-≤-nonNeg
{-# WARNING_ON_USAGE *-monoˡ-≤-non-neg
"Warning: *-monoˡ-≤-non-neg deprecated in v1.5.
Please use *-monoˡ-≤-nonNeg instead."
#-}
*-cancelˡ-<-non-neg = *-cancelˡ-<-nonNeg
{-# WARNING_ON_USAGE *-cancelˡ-<-non-neg
"Warning: *-cancelˡ-<-non-neg was deprecated in v1.5.
Please use *-cancelˡ-<-nonNeg instead."
#-}
*-cancelʳ-<-non-neg = *-cancelʳ-<-nonNeg
{-# WARNING_ON_USAGE *-cancelʳ-<-non-neg
"Warning: *-cancelʳ-<-non-neg was deprecated in v1.5.
Please use *-cancelʳ-<-nonNeg instead."
#-}
m≤n⇒m⊓n≡m = i≤j⇒i⊓j≡i
{-# WARNING_ON_USAGE m≤n⇒m⊓n≡m
"Warning: m≤n⇒m⊓n≡m was deprecated in v1.6
Please use i≤j⇒i⊓j≡i instead."
#-}
m⊓n≡m⇒m≤n = i⊓j≡i⇒i≤j
{-# WARNING_ON_USAGE m⊓n≡m⇒m≤n
"Warning: m≤n⇒m⊓n≡m was deprecated in v1.6
Please use i⊓j≡i⇒i≤j instead."
#-}
m≥n⇒m⊓n≡n = i≥j⇒i⊓j≡j
{-# WARNING_ON_USAGE m≥n⇒m⊓n≡n
"Warning: m≥n⇒m⊓n≡n was deprecated in v1.6
Please use i≥j⇒i⊓j≡j instead."
#-}
m⊓n≡n⇒m≥n = i⊓j≡j⇒j≤i
{-# WARNING_ON_USAGE m⊓n≡n⇒m≥n
"Warning: m⊓n≡n⇒m≥n was deprecated in v1.6
Please use i⊓j≡j⇒j≤i instead."
#-}
m⊓n≤n = i⊓j≤j
{-# WARNING_ON_USAGE m⊓n≤n
"Warning: m⊓n≤n was deprecated in v1.6
Please use i⊓j≤j instead."
#-}
m⊓n≤m = i⊓j≤i
{-# WARNING_ON_USAGE m⊓n≤m
"Warning: m⊓n≤m was deprecated in v1.6
Please use i⊓j≤i instead."
#-}
m≤n⇒m⊔n≡n = i≤j⇒i⊔j≡j
{-# WARNING_ON_USAGE m≤n⇒m⊔n≡n
"Warning: m≤n⇒m⊔n≡n was deprecated in v1.6
Please use i≤j⇒i⊔j≡j instead."
#-}
m⊔n≡n⇒m≤n = i⊔j≡j⇒i≤j
{-# WARNING_ON_USAGE m⊔n≡n⇒m≤n
"Warning: m⊔n≡n⇒m≤n was deprecated in v1.6
Please use i⊔j≡j⇒i≤j instead."
#-}
m≥n⇒m⊔n≡m = i≥j⇒i⊔j≡i
{-# WARNING_ON_USAGE m≥n⇒m⊔n≡m
"Warning: m≥n⇒m⊔n≡m was deprecated in v1.6
Please use i≥j⇒i⊔j≡i instead."
#-}
m⊔n≡m⇒m≥n = i⊔j≡i⇒j≤i
{-# WARNING_ON_USAGE m⊔n≡m⇒m≥n
"Warning: m⊔n≡m⇒m≥n was deprecated in v1.6
Please use i⊔j≡i⇒j≤i instead."
#-}
m≤m⊔n = i≤i⊔j
{-# WARNING_ON_USAGE m≤m⊔n
"Warning: m≤m⊔n was deprecated in v1.6
Please use i≤i⊔j instead."
#-}
n≤m⊔n = i≤j⊔i
{-# WARNING_ON_USAGE n≤m⊔n
"Warning: n≤m⊔n was deprecated in v1.6
Please use i≤j⊔i instead."
#-}