{-# OPTIONS --without-K --safe #-}
module Data.Nat.DivMod where
open import Agda.Builtin.Nat using (div-helper; mod-helper)
open import Data.Fin.Base using (Fin; toℕ; fromℕ<)
open import Data.Fin.Properties using (toℕ-fromℕ<)
open import Data.Nat.Base as Nat
open import Data.Nat.DivMod.Core
open import Data.Nat.Divisibility.Core
open import Data.Nat.Induction
open import Data.Nat.Properties
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (False; toWitnessFalse)
import Algebra.Properties.CommutativeSemigroup *-commutativeSemigroup as *-CS
open ≤-Reasoning
infixl 7 _/_ _%_
_/_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ
m / (suc n) = div-helper 0 n m n
_%_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ
m % (suc n) = mod-helper 0 n m n
m≡m%n+[m/n]*n : ∀ m n → m ≡ m % suc n + (m / suc n) * suc n
m≡m%n+[m/n]*n m n = div-mod-lemma 0 0 m n
m%n≡m∸m/n*n : ∀ m n → m % suc n ≡ m ∸ (m / suc n) * suc n
m%n≡m∸m/n*n m n-1 = begin-equality
m % n ≡˘⟨ m+n∸n≡m (m % n) m/n*n ⟩
m % n + m/n*n ∸ m/n*n ≡˘⟨ cong (_∸ m/n*n) (m≡m%n+[m/n]*n m n-1) ⟩
m ∸ m/n*n ∎
where n = suc n-1; m/n*n = (m / n) * n
n%1≡0 : ∀ n → n % 1 ≡ 0
n%1≡0 = a[modₕ]1≡0
n%n≡0 : ∀ n → suc n % suc n ≡ 0
n%n≡0 n = n[modₕ]n≡0 0 n
m%n%n≡m%n : ∀ m n → m % suc n % suc n ≡ m % suc n
m%n%n≡m%n m n = modₕ-idem 0 m n
[m+n]%n≡m%n : ∀ m n → (m + suc n) % suc n ≡ m % suc n
[m+n]%n≡m%n m n = a+n[modₕ]n≡a[modₕ]n 0 m n
[m+kn]%n≡m%n : ∀ m k n → (m + k * (suc n)) % suc n ≡ m % suc n
[m+kn]%n≡m%n m zero n-1 = cong (_% suc n-1) (+-identityʳ m)
[m+kn]%n≡m%n m (suc k) n-1 = begin-equality
(m + (n + k * n)) % n ≡⟨ cong (_% n) (sym (+-assoc m n (k * n))) ⟩
(m + n + k * n) % n ≡⟨ [m+kn]%n≡m%n (m + n) k n-1 ⟩
(m + n) % n ≡⟨ [m+n]%n≡m%n m n-1 ⟩
m % n ∎
where n = suc n-1
m*n%n≡0 : ∀ m n → (m * suc n) % suc n ≡ 0
m*n%n≡0 = [m+kn]%n≡m%n 0
m%n<n : ∀ m n → m % suc n < suc n
m%n<n m n = s≤s (a[modₕ]n<n 0 m n)
m%n≤m : ∀ m n → m % suc n ≤ m
m%n≤m m n = a[modₕ]n≤a 0 m n
m≤n⇒m%n≡m : ∀ {m n} → m ≤ n → m % suc n ≡ m
m≤n⇒m%n≡m {m} {n} m≤n with ≤⇒≤″ m≤n
... | less-than-or-equal {k} refl = a≤n⇒a[modₕ]n≡a 0 (m + k) m k
%-pred-≡0 : ∀ {m n} {≢0} → (suc m % n) {≢0} ≡ 0 → (m % n) {≢0} ≡ n ∸ 1
%-pred-≡0 {m} {suc n-1} eq = a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 0 n-1 m eq
m<[1+n%d]⇒m≤[n%d] : ∀ {m} n d {≢0} → m < (suc n % d) {≢0} → m ≤ (n % d) {≢0}
m<[1+n%d]⇒m≤[n%d] {m} n (suc d-1) = k<1+a[modₕ]n⇒k≤a[modₕ]n 0 m n d-1
[1+m%d]≤1+n⇒[m%d]≤n : ∀ m n d {≢0} → 0 < (suc m % d) {≢0} → (suc m % d) {≢0} ≤ suc n → (m % d) {≢0} ≤ n
[1+m%d]≤1+n⇒[m%d]≤n m n (suc d-1) leq = 1+a[modₕ]n≤1+k⇒a[modₕ]n≤k 0 n m d-1 leq
%-distribˡ-+ : ∀ m n d {≢0} → ((m + n) % d) {≢0} ≡ (((m % d) {≢0} + (n % d) {≢0}) % d) {≢0}
%-distribˡ-+ m n d@(suc d-1) = begin-equality
(m + n) % d ≡⟨ cong (λ v → (v + n) % d) (m≡m%n+[m/n]*n m d-1) ⟩
(m % d + m / d * d + n) % d ≡⟨ cong (_% d) (+-assoc (m % d) _ n) ⟩
(m % d + (m / d * d + n)) % d ≡⟨ cong (λ v → (m % d + v) % d) (+-comm _ n) ⟩
(m % d + (n + m / d * d)) % d ≡⟨ cong (_% d) (sym (+-assoc (m % d) n _)) ⟩
(m % d + n + m / d * d) % d ≡⟨ [m+kn]%n≡m%n (m % d + n) (m / d) d-1 ⟩
(m % d + n) % d ≡⟨ cong (λ v → (m % d + v) % d) (m≡m%n+[m/n]*n n d-1) ⟩
(m % d + (n % d + (n / d) * d)) % d ≡⟨ sym (cong (_% d) (+-assoc (m % d) (n % d) _)) ⟩
(m % d + n % d + (n / d) * d) % d ≡⟨ [m+kn]%n≡m%n (m % d + n % d) (n / d) d-1 ⟩
(m % d + n % d) % d ∎
%-distribˡ-* : ∀ m n d {≢0} → ((m * n) % d) {≢0} ≡ (((m % d) {≢0} * (n % d) {≢0}) % d) {≢0}
%-distribˡ-* m n d@(suc d-1) = begin-equality
(m * n) % d ≡⟨ cong (λ h → (h * n) % d) (m≡m%n+[m/n]*n m d-1) ⟩
((m′ + k * d) * n) % d ≡⟨ cong (λ h → ((m′ + k * d) * h) % d) (m≡m%n+[m/n]*n n d-1) ⟩
((m′ + k * d) * (n′ + j * d)) % d ≡⟨ cong (_% d) lemma ⟩
(m′ * n′ + (m′ * j + (n′ + j * d) * k) * d) % d ≡⟨ [m+kn]%n≡m%n (m′ * n′) (m′ * j + (n′ + j * d) * k) d-1 ⟩
(m′ * n′) % d ≡⟨⟩
((m % d) * (n % d)) % d ∎
where
m′ = m % d
n′ = n % d
k = m / d
j = n / d
lemma : (m′ + k * d) * (n′ + j * d) ≡ m′ * n′ + (m′ * j + (n′ + j * d) * k) * d
lemma = begin-equality
(m′ + k * d) * (n′ + j * d) ≡⟨ *-distribʳ-+ (n′ + j * d) m′ (k * d) ⟩
m′ * (n′ + j * d) + (k * d) * (n′ + j * d) ≡⟨ cong₂ _+_ (*-distribˡ-+ m′ n′ (j * d)) (*-comm (k * d) (n′ + j * d)) ⟩
(m′ * n′ + m′ * (j * d)) + (n′ + j * d) * (k * d) ≡⟨ +-assoc (m′ * n′) (m′ * (j * d)) ((n′ + j * d) * (k * d)) ⟩
m′ * n′ + (m′ * (j * d) + (n′ + j * d) * (k * d)) ≡˘⟨ cong (m′ * n′ +_) (cong₂ _+_ (*-assoc m′ j d) (*-assoc (n′ + j * d) k d)) ⟩
m′ * n′ + ((m′ * j) * d + ((n′ + j * d) * k) * d) ≡˘⟨ cong (m′ * n′ +_) (*-distribʳ-+ d (m′ * j) ((n′ + j * d) * k)) ⟩
m′ * n′ + (m′ * j + (n′ + j * d) * k) * d ∎
%-remove-+ˡ : ∀ {m} n {d} {≢0} → d ∣ m → ((m + n) % d) {≢0} ≡ (n % d) {≢0}
%-remove-+ˡ {m} n {d@(suc d-1)} (divides p refl) = begin-equality
(p * d + n) % d ≡⟨ cong (_% d) (+-comm (p * d) n) ⟩
(n + p * d) % d ≡⟨ [m+kn]%n≡m%n n p d-1 ⟩
n % d ∎
%-remove-+ʳ : ∀ m {n d} {≢0} → d ∣ n → ((m + n) % d) {≢0} ≡ (m % d) {≢0}
%-remove-+ʳ m {n} {suc _} eq rewrite +-comm m n = %-remove-+ˡ {n} m eq
/-congˡ : ∀ {m n o : ℕ} {o≢0} → m ≡ n → (m / o) {o≢0} ≡ (n / o) {o≢0}
/-congˡ refl = refl
/-congʳ : ∀ {m n o : ℕ} {n≢0 o≢0} → n ≡ o →
(m / n) {n≢0} ≡ (m / o) {o≢0}
/-congʳ {_} {suc _} {suc _} refl = refl
0/n≡0 : ∀ n {≢0} → (0 / n) {≢0} ≡ 0
0/n≡0 (suc n-1) = refl
n/1≡n : ∀ n → n / 1 ≡ n
n/1≡n n = a[divₕ]1≡a 0 n
n/n≡1 : ∀ n {≢0} → (n / n) {≢0} ≡ 1
n/n≡1 (suc n-1) = n[divₕ]n≡1 n-1 n-1
m*n/n≡m : ∀ m n {≢0} → (m * n / n) {≢0} ≡ m
m*n/n≡m m (suc n-1) = a*n[divₕ]n≡a 0 m n-1
m/n*n≡m : ∀ {m n} {≢0} → n ∣ m → (m / n) {≢0} * n ≡ m
m/n*n≡m {_} {n@(suc n-1)} (divides q refl) = cong (_* n) (m*n/n≡m q n)
m*[n/m]≡n : ∀ {m n} {≢0} → m ∣ n → m * (n / m) {≢0} ≡ n
m*[n/m]≡n {m} m∣n = trans (*-comm m (_ / m)) (m/n*n≡m m∣n)
m/n*n≤m : ∀ m n {≢0} → (m / n) {≢0} * n ≤ m
m/n*n≤m m n@(suc n-1) = begin
(m / n) * n ≤⟨ m≤m+n ((m / n) * n) (m % n) ⟩
(m / n) * n + m % n ≡⟨ +-comm _ (m % n) ⟩
m % n + (m / n) * n ≡⟨ sym (m≡m%n+[m/n]*n m n-1) ⟩
m ∎
m/n≤m : ∀ m n {≢0} → (m / n) {≢0} ≤ m
m/n≤m m n@(suc n-1) = *-cancelʳ-≤ (m / n) m n-1 (begin
(m / n) * n ≤⟨ m/n*n≤m m n ⟩
m ≤⟨ m≤m*n m (s≤s z≤n) ⟩
m * n ∎)
m/n<m : ∀ m n {≢0} → m ≥ 1 → n ≥ 2 → (m / n) {≢0} < m
m/n<m m n@(suc n-1) m≥1 n≥2 = *-cancelʳ-< {n} (m / n) m (begin-strict
(m / n) * n ≤⟨ m/n*n≤m m n ⟩
m <⟨ m<m*n m≥1 n≥2 ⟩
m * n ∎)
/-mono-≤ : ∀ {m n o p} {o≢0 p≢0} → m ≤ n → o ≥ p → (m / o) {o≢0} ≤ (n / p) {p≢0}
/-mono-≤ m≤n (s≤s o≥p) = divₕ-mono-≤ 0 m≤n o≥p
/-monoˡ-≤ : ∀ {m n o} {o≢0} → m ≤ n → (m / o) {o≢0} ≤ (n / o) {o≢0}
/-monoˡ-≤ {o≢0 = o≢0} m≤n = /-mono-≤ {o≢0 = o≢0} {o≢0} m≤n ≤-refl
/-monoʳ-≤ : ∀ m {n o} {n≢0 o≢0} → n ≥ o → (m / n) {n≢0} ≤ (m / o) {o≢0}
/-monoʳ-≤ _ {n≢0 = n≢0} {o≢0} n≥o = /-mono-≤ {o≢0 = n≢0} {o≢0} ≤-refl n≥o
/-cancelʳ-≡ : ∀ {m n o o≢0} → o ∣ m → o ∣ n →
(m / o) {o≢0} ≡ (n / o) {o≢0} → m ≡ n
/-cancelʳ-≡ {m} {n} {o} {o≢0} o∣m o∣n m/o≡n/o = begin-equality
m ≡˘⟨ m*[n/m]≡n {o} {m} o∣m ⟩
o * (m / o) {o≢0} ≡⟨ cong (o *_) m/o≡n/o ⟩
o * (n / o) {o≢0} ≡⟨ m*[n/m]≡n {o} {n} o∣n ⟩
n ∎
m<n⇒m/n≡0 : ∀ {m n n≢0} → m < n → (m / n) {n≢0} ≡ 0
m<n⇒m/n≡0 {m} {suc n} {n≢0} (s≤s m≤n) = divₕ-finish n m n m≤n
m≥n⇒m/n>0 : ∀ {m n n≢0} → m ≥ n → (m / n) {n≢0} > 0
m≥n⇒m/n>0 {m@(suc m-1)} {n@(suc n-1)} m≥n = begin
1 ≡⟨ sym (n/n≡1 m) ⟩
m / m ≤⟨ /-monoʳ-≤ m m≥n ⟩
m / n ∎
+-distrib-/ : ∀ m n {d} {≢0} → (m % d) {≢0} + (n % d) {≢0} < d →
((m + n) / d) {≢0} ≡ (m / d) {≢0} + (n / d) {≢0}
+-distrib-/ m n {suc d-1} leq = +-distrib-divₕ 0 0 m n d-1 leq
+-distrib-/-∣ˡ : ∀ {m} n {d} {≢0} → d ∣ m →
((m + n) / d) {≢0} ≡ (m / d) {≢0} + (n / d) {≢0}
+-distrib-/-∣ˡ {m} n {d@(suc d-1)} (divides p refl) = +-distrib-/ m n (begin-strict
p * d % d + n % d ≡⟨ cong (_+ n % d) (m*n%n≡0 p d-1) ⟩
n % d <⟨ m%n<n n d-1 ⟩
d ∎)
+-distrib-/-∣ʳ : ∀ {m} n {d} {≢0} → d ∣ n →
((m + n) / d) {≢0} ≡ (m / d) {≢0} + (n / d) {≢0}
+-distrib-/-∣ʳ {m} n {d@(suc d-1)} (divides p refl) = +-distrib-/ m n (begin-strict
m % d + p * d % d ≡⟨ cong (m % d +_) (m*n%n≡0 p d-1) ⟩
m % d + 0 ≡⟨ +-identityʳ _ ⟩
m % d <⟨ m%n<n m d-1 ⟩
d ∎)
m/n≡1+[m∸n]/n : ∀ {m n n≢0} → m ≥ n → (m / n) {n≢0} ≡ 1 + ((m ∸ n) / n) {n≢0}
m/n≡1+[m∸n]/n {m@(suc m-1)} {n@(suc n-1)} {n≢0} m≥n = begin-equality
m / n ≡⟨⟩
div-helper zero n-1 m n-1 ≡⟨ divₕ-restart n-1 m n-1 m≥n ⟩
div-helper 1 n-1 (m ∸ n) n-1 ≡⟨ divₕ-extractAcc 1 n-1 (m ∸ n) n-1 ⟩
1 + (div-helper 0 n-1 (m ∸ n) n-1) ≡⟨⟩
1 + (m ∸ n) / n ∎
m*n/m*o≡n/o : ∀ m n o {o≢0} {mo≢0} → ((m * n) / (m * o)) {mo≢0} ≡ (n / o) {o≢0}
m*n/m*o≡n/o m@(suc m-1) n o {o≢0} = helper (<-wellFounded n)
where
helper : ∀ {n} → Acc _<_ n → (m * n) / (m * o) ≡ n / o
helper {n} (acc rec) with n <? o
... | yes n<o = trans (m<n⇒m/n≡0 (*-monoʳ-< m-1 n<o)) (sym (m<n⇒m/n≡0 n<o))
... | no n≮o = begin-equality
(m * n) / (m * o) ≡⟨ m/n≡1+[m∸n]/n (*-monoʳ-≤ m (≮⇒≥ n≮o)) ⟩
1 + (m * n ∸ m * o) / (m * o) ≡⟨ cong suc (/-congˡ {o = m * o} (sym (*-distribˡ-∸ m n o))) ⟩
1 + (m * (n ∸ o)) / (m * o) ≡⟨ cong suc (helper (rec (n ∸ o) n∸o<n)) ⟩
1 + (n ∸ o) / o ≡˘⟨ cong₂ _+_ (n/n≡1 o) refl ⟩
o / o + (n ∸ o) / o ≡˘⟨ +-distrib-/-∣ˡ (n ∸ o) (divides 1 ((sym (*-identityˡ o)))) ⟩
(o + (n ∸ o)) / o ≡⟨ /-congˡ {o = o} (m+[n∸m]≡n (≮⇒≥ n≮o)) ⟩
n / o ∎
where n∸o<n = ∸-monoʳ-< (n≢0⇒n>0 (toWitnessFalse o≢0)) (≮⇒≥ n≮o)
*-/-assoc : ∀ m {n d} {≢0} → d ∣ n → (m * n / d) {≢0} ≡ m * ((n / d) {≢0})
*-/-assoc zero {_} {d@(suc _)} d∣n = 0/n≡0 (suc d)
*-/-assoc (suc m) {n} {d@(suc _)} d∣n = begin-equality
(n + m * n) / d ≡⟨ +-distrib-/-∣ˡ _ d∣n ⟩
n / d + (m * n) / d ≡⟨ cong (n / d +_) (*-/-assoc m d∣n) ⟩
n / d + m * (n / d) ∎
/-*-interchange : ∀ {m n o p op≢0 o≢0 p≢0} → o ∣ m → p ∣ n →
((m * n) / (o * p)) {op≢0} ≡ (m / o) {o≢0} * (n / p) {p≢0}
/-*-interchange {m} {n} {o@(suc _)} {p@(suc _)} o∣m p∣n = *-cancelˡ-≡ (pred (o * p)) (begin-equality
(o * p) * ((m * n) / (o * p)) ≡⟨ m*[n/m]≡n (*-pres-∣ o∣m p∣n) ⟩
m * n ≡˘⟨ cong₂ _*_ (m*[n/m]≡n o∣m) (m*[n/m]≡n p∣n) ⟩
(o * (m / o)) * (p * (n / p)) ≡⟨ [m*n]*[o*p]≡[m*o]*[n*p] o (m / o) p (n / p) ⟩
(o * p) * ((m / o) * (n / p)) ∎)
record DivMod (dividend divisor : ℕ) : Set where
constructor result
field
quotient : ℕ
remainder : Fin divisor
property : dividend ≡ toℕ remainder + quotient * divisor
infixl 7 _div_ _mod_ _divMod_
_div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ
_div_ = _/_
_mod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → Fin divisor
m mod (suc n) = fromℕ< (m%n<n m n)
_divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} →
DivMod dividend divisor
m divMod n@(suc n-1) = result (m / n) (m mod n) (begin-equality
m ≡⟨ m≡m%n+[m/n]*n m n-1 ⟩
m % n + [m/n]*n ≡⟨ cong (_+ [m/n]*n) (sym (toℕ-fromℕ< (m%n<n m n-1))) ⟩
toℕ (fromℕ< (m%n<n m n-1)) + [m/n]*n ∎)
where [m/n]*n = m / n * n
a≡a%n+[a/n]*n = m≡m%n+[m/n]*n
{-# WARNING_ON_USAGE a≡a%n+[a/n]*n
"Warning: a≡a%n+[a/n]*n was deprecated in v1.1.
Please use m≡m%n+[m/n]*n instead."
#-}
a%1≡0 = n%1≡0
{-# WARNING_ON_USAGE a%1≡0
"Warning: a%1≡0 was deprecated in v1.1.
Please use n%1≡0 instead."
#-}
a%n%n≡a%n = m%n%n≡m%n
{-# WARNING_ON_USAGE a%n%n≡a%n
"Warning: a%n%n≡a%n was deprecated in v1.1.
Please use m%n%n≡m%n instead."
#-}
[a+n]%n≡a%n = [m+n]%n≡m%n
{-# WARNING_ON_USAGE [a+n]%n≡a%n
"Warning: [a+n]%n≡a%n was deprecated in v1.1.
Please use [m+n]%n≡m%n instead."
#-}
[a+kn]%n≡a%n = [m+kn]%n≡m%n
{-# WARNING_ON_USAGE [a+kn]%n≡a%n
"Warning: [a+kn]%n≡a%n was deprecated in v1.1.
Please use [m+kn]%n≡m%n instead."
#-}
kn%n≡0 = m*n%n≡0
{-# WARNING_ON_USAGE kn%n≡0
"Warning: kn%n≡0 was deprecated in v1.1.
Please use m*n%n≡0 instead."
#-}
a%n<n = m%n<n
{-# WARNING_ON_USAGE a%n<n
"Warning: a%n<n was deprecated in v1.1.
Please use m%n<n instead."
#-}