{-# OPTIONS --without-K --safe #-}
open import Text.Parser.Types.Core using (Parameters)
module Text.Parser.Combinators {l} {P : Parameters l} where
open import Level.Bounded as Level≤ hiding (map)
open import Relation.Unary using (IUniversal; _⇒_)
open import Induction.Nat.Strong as Box using (□_)
open import Data.Nat.Base using (ℕ; _≤_; _<_)
open import Data.Bool.Base as Bool using (Bool; if_then_else_; not; _∧_)
open import Data.List.Base as List using (_∷_; []; null)
open import Data.List.NonEmpty as List⁺ using (_∷⁺_ ; _∷_)
open import Data.Maybe.Base as M using (just; nothing; maybe)
open import Data.Nat.Base using (suc; NonZero)
open import Data.Product as Product using (Σ-syntax; _,_; proj₁; proj₂; uncurry)
open import Data.Sum.Base as Sum using (inj₁; inj₂)
open import Data.Vec.Base as Vec using (_∷_; [])
open import Data.Nat.Properties as Nat using (≤-refl; ≤-trans; <⇒≤; <-trans)
import Data.List.Relation.Unary.Any as Any
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Relation.Binary.PropositionalEquality.Decidable.Core using (DecidableEquality; decide)
open import Effect.Monad using (RawMonadPlus)
open import Data.List.Sized.Interface using (Sized)
open import Function.Base using (const; _$_; _∘_; _∘′_; flip; case_of_)
open import Text.Parser.Types.Core
open import Text.Parser.Types P
open import Text.Parser.Success P as S hiding (guardM)
open Parameters P
module _ {{𝕊 : Sized Tok Toks}} {{𝕄 : RawMonadPlus M}}
where
private module 𝕄 = RawMonadPlus 𝕄
anyTok : ∀[ Parser Tok ]
runParser anyTok m≤n s = case view (lower s) of λ where
nothing → 𝕄.∅
(just t) → t 𝕄.<$ recordToken (lower $ Success.value t)
module _ {A B : Set≤ l} where
guardM : theSet (A ⟶ Maybe B) → ∀[ Parser A ⇒ Parser B ]
runParser (guardM p A) m≤n s =
runParser A m≤n s 𝕄.>>= maybe 𝕄.pure 𝕄.∅ ∘′ S.guardM p
module _ {A : Set≤ l} where
guard : theSet (A ⟶ [ Bool ]) → ∀[ Parser A ⇒ Parser A ]
guard p = guardM (λ a → if p a then just a else nothing)
maybeTok : theSet (Tok ⟶ Maybe A) → ∀[ Parser A ]
maybeTok p = guardM p anyTok
≤-lower : {m n : ℕ} → .(m ≤ n) → Parser A n → Parser A m
runParser (≤-lower m≤n A) p≤m = runParser A (≤-trans p≤m m≤n)
<-lower : {m n : ℕ} → .(m < n) → Parser A n → Parser A m
<-lower m<n = ≤-lower (<⇒≤ m<n)
box : ∀[ Parser A ⇒ □ Parser A ]
box = Box.≤-close ≤-lower
fail : ∀[ Parser A ]
runParser fail _ _ = 𝕄.∅
infixr 3 _<|>_
_<|>_ : ∀[ Parser A ⇒ Parser A ⇒ Parser A ]
runParser (A₁ <|> A₂) m≤n s = runParser A₁ m≤n s 𝕄.∣ runParser A₂ m≤n s
module _ {A B C : Set≤ l} where
lift2 : ∀[ Parser A ⇒ Parser B ⇒ Parser C ] →
∀[ □ (Parser A) ⇒ □ (Parser B) ⇒ □ (Parser C) ]
lift2 = Box.map2
lift2l : ∀[ Parser A ⇒ Parser B ⇒ Parser C ] ->
∀[ □ (Parser A) ⇒ Parser B ⇒ □ (Parser C) ]
lift2l f a b = lift2 f a (box b)
lift2r : ∀[ Parser A ⇒ Parser B ⇒ Parser C ] ->
∀[ Parser A ⇒ □ (Parser B) ⇒ □ (Parser C) ]
lift2r f a b = lift2 f (box a) b
module _ {A : Set≤ l} {b} {{b≤l : b ≤l l}} {B : theSet A → Set b} where
_&?>>=_ : ∀ {n} → Parser A n → ((a : theSet A) → (□ Parser (mkSet≤ (B a))) n) →
Parser (Σ A λ a → M.Maybe (B a)) n
runParser (A &?>>= B) m≤n s =
runParser A m≤n s 𝕄.>>= λ rA →
let (a ^ p<m , s′) = rA in
(runParser (Box.call (B (lower a)) (≤-trans p<m m≤n)) ≤-refl s′ 𝕄.>>= λ rB →
𝕄.pure (S.and rA (S.map just rB)))
𝕄.∣ 𝕄.pure ((lift (lower a , nothing)) ^ p<m , s′)
_&>>=_ : ∀ {n} → Parser A n → ((a : theSet A) → (□ Parser (mkSet≤ (B a))) n) →
Parser (Σ A B) n
runParser (A &>>= B) m≤n s =
runParser A m≤n s 𝕄.>>= λ rA →
let (a ^ p<m , s′) = rA in
(runParser (Box.call (B (lower a)) (≤-trans p<m m≤n)) ≤-refl s′ 𝕄.>>= λ rB →
𝕄.pure (S.and rA rB))
module _ {A B : Set≤ l} where
infixr 5 _<$>_
_<$>_ : theSet (A ⟶ B) → ∀[ Parser A ⇒ Parser B ]
runParser (f <$> p) lt s = S.map f 𝕄.<$> runParser p lt s
infixr 5 _<$_
_<$_ : theSet B → ∀[ Parser A ⇒ Parser B ]
b <$ p = const b <$> p
module _ {A : Set≤ l} {b} {{b≤l : b ≤l l}} {B : theSet (Maybe A) → Set b} where
_?&>>=_ : ∀ {n} → Parser A n → ((ma : theSet (Maybe A)) → Parser (mkSet≤ (B ma)) n) →
Parser (Σ (Maybe A) B) n
runParser (_?&>>=_ {n} pA pB) m≤n s =
let p : Parser (A ⊎ mkSet≤ (B nothing)) n
p = inj₁ <$> pA <|> inj₂ <$> pB nothing
in runParser p m≤n s 𝕄.>>= λ (v ^ p<m , ts) → case lower v of λ where
(inj₂ b) → 𝕄.pure (lift (nothing , b) ^ p<m , ts)
(inj₁ a) → (S.map (just a ,_) ∘′ <-lift p<m)
𝕄.<$> runParser (pB (just a)) (≤-trans (<⇒≤ p<m) m≤n) ts
module _ {A B : Set≤ l} where
_&?>>=′_ : ∀[ Parser A ⇒ (const (theSet A) ⇒ □ Parser B) ⇒
Parser (A × Maybe B) ]
runParser (A &?>>=′ B) m≤n s =
runParser A m≤n s 𝕄.>>= λ rA →
let (a ^ p<m , s′) = rA in
(runParser (Box.call (B (lower a)) (≤-trans p<m m≤n)) ≤-refl s′ 𝕄.>>= λ rB →
𝕄.pure (S.and′ rA (S.map just rB)))
𝕄.∣ 𝕄.pure (lift (lower a , nothing) ^ p<m , s′)
_&>>=′_ : ∀[ Parser A ⇒ (const (theSet A) ⇒ □ Parser B) ⇒ Parser (A × B) ]
runParser (A &>>=′ B) m≤n s =
runParser A m≤n s 𝕄.>>= λ rA →
let (a ^ p<m , s′) = rA in
(runParser (Box.call (B (lower a)) (≤-trans p<m m≤n)) ≤-refl s′ 𝕄.>>= λ rB →
𝕄.pure (S.and′ rA rB))
module _ {A B : Set≤ l} where
_?&>>=′_ : ∀[ Parser A ⇒ (const (theSet (Maybe A)) ⇒ Parser B) ⇒
Parser (Maybe A × B) ]
_?&>>=′_ = _?&>>=_
module _ {A B : Set≤ l} where
_>>=_ : ∀[ Parser A ⇒ (const (theSet A) ⇒ □ Parser B) ⇒ Parser B ]
A >>= B = proj₂ <$> A &>>=′ B
infixl 4 _<&>_ _<&_ _&>_
_<&>_ : ∀[ Parser A ⇒ □ Parser B ⇒ Parser (A × B) ]
A <&> B = A &>>=′ const B
_<&_ : ∀[ Parser A ⇒ □ Parser B ⇒ Parser A ]
A <& B = proj₁ <$> (A <&> B)
_&>_ : ∀[ Parser A ⇒ □ Parser B ⇒ Parser B ]
A &> B = proj₂ <$> (A <&> B)
module _ {A : Set≤ l} where
alts : ∀[ List.List ∘′ Parser A ⇒ Parser A ]
alts = List.foldr _<|>_ fail
ands : ∀[ List⁺.List⁺ ∘′ Parser A ⇒ Parser (List⁺ A) ]
ands ps = List⁺.foldr₁ (λ p ps → uncurry List⁺._⁺++⁺_ <$> (p <&> box ps))
(List⁺.map (List⁺.[_] <$>_) ps)
module _ {A B : Set≤ l} where
infixl 4 _<*>_
_<*>_ : ∀[ Parser (A ⟶ B) ⇒ □ Parser A ⇒ Parser B ]
F <*> A = uncurry _$_ <$> (F <&> A)
infixl 4 _<&M>_ _<&M_ _&M>_
_<&M>_ : ∀[ Parser A ⇒ const (M (Lift B)) ⇒ Parser (A × B) ]
runParser (A <&M> B) m≤n s =
runParser A m≤n s 𝕄.>>= λ rA → B 𝕄.>>= λ b →
𝕄.pure (S.map (_, lower b) rA)
_<&M_ : ∀[ Parser A ⇒ const (M (Lift B)) ⇒ Parser A ]
A <&M B = proj₁ <$> (A <&M> B)
_&M>_ : ∀[ Parser A ⇒ const (M (Lift B)) ⇒ Parser B ]
A &M> B = proj₂ <$> (A <&M> B)
infixl 4 _<&?>_ _<&?_ _&?>_
_<&?>_ : ∀[ Parser A ⇒ □ Parser B ⇒ Parser (A × Maybe B) ]
A <&?> B = A &?>>=′ const B
_<&?_ : ∀[ Parser A ⇒ □ Parser B ⇒ Parser A ]
A <&? B = proj₁ <$> (A <&?> B)
_&?>_ : ∀[ Parser A ⇒ □ Parser B ⇒ Parser (Maybe B) ]
A &?> B = proj₂ <$> (A <&?> B)
infixr 3 _<⊎>_
_<⊎>_ : ∀[ Parser A ⇒ Parser B ⇒ Parser (A ⊎ B) ]
A <⊎> B = inj₁ <$> A <|> inj₂ <$> B
module _ {A B R : Set≤ l} where
<[_,_]> : ∀[ const (theSet A → theSet R) ⇒ (const (theSet B) ⇒ □ Parser R) ⇒
Parser (A ⊎ B) ⇒ Parser R ]
runParser (<[ f , k ]> A⊎B) m≤n s =
runParser A⊎B m≤n s 𝕄.>>= λ rA⊎B → let (v ^ p<m , s′) = rA⊎B in
case lower v of λ where
(inj₁ a) → 𝕄.pure (lift (f a) ^ p<m , s′)
(inj₂ b) → <-lift p<m 𝕄.<$> runParser (Box.call (k b) (≤-trans p<m m≤n)) ≤-refl s′
module _ {A B : Set≤ l} where
infixl 4 _<?&>_ _<?&_ _?&>_
_<?&>_ : ∀[ Parser A ⇒ Parser B ⇒ Parser (Maybe A × B) ]
A <?&> B = just <$> A <&> box B <|> (nothing ,_) <$> B
_<?&_ : ∀[ Parser A ⇒ Parser B ⇒ Parser (Maybe A) ]
A <?& B = proj₁ <$> (A <?&> B)
_?&>_ : ∀[ Parser A ⇒ Parser B ⇒ Parser B ]
A ?&> B = proj₂ <$> (A <?&> B)
infixl 4 _<M&>_ _<M&_ _M&>_
_<M&>_ : ∀[ const (M (Lift A)) ⇒ Parser B ⇒ Parser (A × B) ]
runParser (A <M&> B) m≤n s =
A 𝕄.>>= λ a → S.map (lower a ,_) 𝕄.<$> runParser B m≤n s
_<M&_ : ∀[ const (M (Lift A)) ⇒ Parser B ⇒ Parser A ]
A <M& B = proj₁ <$> (A <M&> B)
_M&>_ : ∀[ const (M (Lift A)) ⇒ Parser B ⇒ Parser B ]
A M&> B = proj₂ <$> (A <M&> B)
module _ {A B C : Set≤ l} where
between : ∀[ Parser A ⇒ □ Parser C ⇒ □ Parser B ⇒ Parser B ]
between A C B = A &> B <& C
between? : ∀[ Parser A ⇒ □ Parser C ⇒ Parser B ⇒ Parser B ]
between? A C B = between A C (box B) <|> B
module _ {{eq? : DecidableEquality (theSet Tok)}} where
anyOf : theSet (List Tok) → ∀[ Parser Tok ]
anyOf ts = guard (λ c → not (null ts) ∧ List.any (⌊_⌋ ∘ decide eq? c) ts) anyTok
exact : theSet Tok → ∀[ Parser Tok ]
exact = anyOf ∘′ List.[_]
exacts : theSet (List⁺ Tok) → ∀[ Parser (List⁺ Tok) ]
exacts ts = ands (List⁺.map (λ t → exact t) ts)
noneOf : theSet (List Tok) → ∀[ Parser Tok ]
noneOf ts = maybeTok $ λ t → case Any.any? (eq? .decide t) ts of λ where
(yes p) → nothing
(no ¬p) → just t
anyTokenBut : theSet Tok → ∀[ Parser Tok ]
anyTokenBut = noneOf ∘′ List.[_]
module _ {A : Set≤ l} where
schainl : ∀[ Success Toks A ⇒ □ Parser (A ⟶ A) ⇒ M ∘′ Success Toks A ]
schainl = Box.fix goal $ λ rec sA op → rest rec sA op 𝕄.∣ 𝕄.pure sA where
goal = Success Toks A ⇒ □ Parser (A ⟶ A) ⇒ M ∘′ Success Toks A
rest : ∀[ □ goal ⇒ goal ]
rest rec (a ^ p<m , s) op = runParser (Box.call op p<m) ≤-refl s 𝕄.>>= λ sOp →
Box.call rec p<m (S.map (_$ lower a) sOp) (Box.<-lower p<m op) 𝕄.>>=
𝕄.pure ∘′ <-lift p<m
iterate : ∀[ Parser A ⇒ □ Parser (A ⟶ A) ⇒ Parser A ]
runParser (iterate {n} a op) m≤n s =
runParser a m≤n s 𝕄.>>= λ sA → schainl sA $ Box.≤-lower m≤n op
module _ {A B : Set≤ l} where
hchainl : ∀[ Parser A ⇒ □ Parser (A ⟶ B ⟶ A) ⇒ □ Parser B ⇒
Parser A ]
hchainl A op B = iterate A (Box.map2 _<*>_ (Box.map (flip <$>_) op) (Box.duplicate B))
module _ {A : Set≤ l} where
chainl1 : ∀[ Parser A ⇒ □ Parser (A ⟶ A ⟶ A) ⇒ Parser A ]
chainl1 a op = hchainl a op (box a)
chainr1 : ∀[ Parser A ⇒ □ Parser (A ⟶ A ⟶ A) ⇒ Parser A ]
chainr1 = Box.fix goal $ λ rec A op → mkParser λ m≤n s →
runParser A m≤n s 𝕄.>>= λ sA →
rest (Box.≤-lower m≤n rec) (≤-lower m≤n A) (Box.≤-lower m≤n op) sA
𝕄.∣ 𝕄.pure sA where
goal = Parser A ⇒ □ Parser (A ⟶ A ⟶ A) ⇒ Parser A
rest : ∀[ □ goal ⇒ Parser A ⇒ □ Parser (A ⟶ A ⟶ A) ⇒
Success Toks A ⇒ M ∘′ Success Toks A ]
rest rec A op sA@(a ^ m<n , s) = runParser (Box.call op m<n) ≤-refl s 𝕄.>>=
λ sOp → let (f ^ p<m , s′) = sOp ; .p<n : _ < _; p<n = <-trans p<m m<n in
let rec′ = Box.call rec p<n (<-lower p<n A) (Box.<-lower p<n op) in
<-lift p<n ∘′ S.map (lower f (lower a) $_) 𝕄.<$> runParser rec′ ≤-refl s′
head+tail : ∀[ Parser A ⇒ □ Parser A ⇒ Parser (List⁺ A) ]
head+tail hd tl = List⁺.reverse
<$> (iterate {List⁺ A} (List⁺.[_] <$> hd) (Box.map (List⁺._∷⁺_ <$>_) tl))
list⁺ : ∀[ Parser A ⇒ Parser (List⁺ A) ]
list⁺ = Box.fix (Parser A ⇒ Parser (List⁺ A)) $ λ rec pA →
uncurry (λ hd → (hd ∷_) ∘′ maybe List⁺.toList [])
<$> (pA <&?> (Box.app rec (box pA)))
replicate : (n : ℕ) → {{NonZero n}} → ∀[ Parser A ⇒ Parser (Vec A n) ]
replicate 1 p = Vec.[_] <$> p
replicate (suc n@(suc _)) p = uncurry Vec._∷_ <$> (p <&> box (replicate n p))