{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Colist.Bisimilarity where
open import Level using (Level; _⊔_)
open import Size
open import Codata.Thunk
open import Codata.Colist
open import Data.List.Base using (List; []; _∷_)
open import Data.List.Relation.Binary.Pointwise using (Pointwise; []; _∷_)
open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as Eq using (_≡_)
private
variable
a b c p q r : Level
A : Set a
B : Set b
C : Set c
i : Size
data Bisim {A : Set a} {B : Set b} (R : REL A B r) (i : Size) :
REL (Colist A ∞) (Colist B ∞) (r ⊔ a ⊔ b) where
[] : Bisim R i [] []
_∷_ : ∀ {x y xs ys} → R x y → Thunk^R (Bisim R) i xs ys →
Bisim R i (x ∷ xs) (y ∷ ys)
module _ {R : Rel A r} where
reflexive : Reflexive R → Reflexive (Bisim R i)
reflexive refl^R {[]} = []
reflexive refl^R {r ∷ rs} = refl^R ∷ λ where .force → reflexive refl^R
module _ {P : REL A B p} {Q : REL B A q} where
symmetric : Sym P Q → Sym (Bisim P i) (Bisim Q i)
symmetric sym^PQ [] = []
symmetric sym^PQ (p ∷ ps) = sym^PQ p ∷ λ where .force → symmetric sym^PQ (ps .force)
module _ {P : REL A B p} {Q : REL B C q} {R : REL A C r} where
transitive : Trans P Q R → Trans (Bisim P i) (Bisim Q i) (Bisim R i)
transitive trans^PQR [] [] = []
transitive trans^PQR (p ∷ ps) (q ∷ qs) =
trans^PQR p q ∷ λ where .force → transitive trans^PQR (ps .force) (qs .force)
module _ {R : REL A B r} where
++⁺ : ∀ {as bs xs ys} → Pointwise R as bs →
Bisim R i xs ys → Bisim R i (fromList as ++ xs) (fromList bs ++ ys)
++⁺ [] rs = rs
++⁺ (r ∷ pw) rs = r ∷ λ where .force → ++⁺ pw rs
⁺++⁺ : ∀ {as bs xs ys} → Pointwise R (List⁺.toList as) (List⁺.toList bs) →
Thunk^R (Bisim R) i xs ys → Bisim R i (as ⁺++ xs) (bs ⁺++ ys)
⁺++⁺ (r ∷ pw) rs = r ∷ λ where .force → ++⁺ pw (rs .force)
module _ {A : Set a} where
infix 1 _⊢_≈_
_⊢_≈_ : ∀ i → Colist A ∞ → Colist A ∞ → Set a
_⊢_≈_ = Bisim _≡_
refl : Reflexive (i ⊢_≈_)
refl = reflexive Eq.refl
fromEq : ∀ {as bs} → as ≡ bs → i ⊢ as ≈ bs
fromEq Eq.refl = refl
sym : Symmetric (i ⊢_≈_)
sym = symmetric Eq.sym
trans : Transitive (i ⊢_≈_)
trans = transitive Eq.trans
isEquivalence : {R : Rel A r} → IsEquivalence R → IsEquivalence (Bisim R i)
isEquivalence equiv^R = record
{ refl = reflexive equiv^R.refl
; sym = symmetric equiv^R.sym
; trans = transitive equiv^R.trans
} where module equiv^R = IsEquivalence equiv^R
setoid : Setoid a r → Size → Setoid a (a ⊔ r)
setoid S i = record
{ isEquivalence = isEquivalence {i = i} (Setoid.isEquivalence S)
}
module ≈-Reasoning {a} {A : Set a} {i} where
open import Relation.Binary.Reasoning.Setoid (setoid (Eq.setoid A) i) public