------------------------------------------------------------------------ -- The Agda standard library -- -- Base definitions for the right-biased universe-sensitive functor -- and monad instances for the Product type. -- -- To minimize the universe level of the RawFunctor, we require that -- elements of B are "lifted" to a copy of B at a higher universe level -- (a ⊔ b). See the Data.Product.Categorical.Examples for how this is -- done. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Level module Data.Product.Categorical.Right.Base {b} (B : Set b) (a : Level) where open import Data.Product using (_×_; map₁; proj₁; proj₂; <_,_>) open import Category.Functor using (RawFunctor) open import Category.Comonad using (RawComonad) ------------------------------------------------------------------------ -- Definitions Productᵣ : Set (a ⊔ b) → Set (a ⊔ b) Productᵣ A = A × B functor : RawFunctor Productᵣ functor = record { _<$>_ = map₁ } comonad : RawComonad Productᵣ comonad = record { extract = proj₁ ; extend = <_, proj₂ > }