------------------------------------------------------------------------
-- The Agda standard library
--
-- Base definitions for the right-biased universe-sensitive functor
-- and monad instances for the Product type.
--
-- To minimize the universe level of the RawFunctor, we require that
-- elements of B are "lifted" to a copy of B at a higher universe level
-- (a ⊔ b). See the Data.Product.Categorical.Examples for how this is
-- done.
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

open import Level

module Data.Product.Categorical.Right.Base
  {b} (B : Set b) (a : Level) where

open import Data.Product using (_×_; map₁; proj₁; proj₂; <_,_>)
open import Category.Functor using (RawFunctor)
open import Category.Comonad using (RawComonad)

------------------------------------------------------------------------
-- Definitions

Productᵣ : Set (a  b)  Set (a  b)
Productᵣ A = A × B

functor : RawFunctor Productᵣ
functor = record { _<$>_ = map₁ }

comonad : RawComonad Productᵣ
comonad = record
  { extract = proj₁
  ; extend  = <_, proj₂ >
  }