{-# OPTIONS --without-K --safe #-}
open import Level
module Data.Sum.Categorical.Left {a} (A : Set a) (b : Level) where
open import Data.Sum.Base
open import Category.Functor
open import Category.Applicative
open import Category.Monad
import Function.Identity.Categorical as Id
open import Function
Sumₗ : Set (a ⊔ b) → Set (a ⊔ b)
Sumₗ B = A ⊎ B
functor : RawFunctor Sumₗ
functor = record { _<$>_ = map₂ }
applicative : RawApplicative Sumₗ
applicative = record
{ pure = inj₂
; _⊛_ = [ const ∘ inj₁ , map₂ ]′
}
monadT : RawMonadT (_∘′ Sumₗ)
monadT M = record
{ return = M.pure ∘ inj₂
; _>>=_ = λ ma f → ma M.>>= [ M.pure ∘′ inj₁ , f ]′
} where module M = RawMonad M
monad : RawMonad Sumₗ
monad = monadT Id.monad
module TraversableA {F} (App : RawApplicative {a ⊔ b} F) where
open RawApplicative App
sequenceA : ∀ {A} → Sumₗ (F A) → F (Sumₗ A)
sequenceA (inj₁ a) = pure (inj₁ a)
sequenceA (inj₂ x) = inj₂ <$> x
mapA : ∀ {A B} → (A → F B) → Sumₗ A → F (Sumₗ B)
mapA f = sequenceA ∘ map₂ f
forA : ∀ {A B} → Sumₗ A → (A → F B) → F (Sumₗ B)
forA = flip mapA
module TraversableM {M} (Mon : RawMonad {a ⊔ b} M) where
open RawMonad Mon
open TraversableA rawIApplicative public
renaming
( sequenceA to sequenceM
; mapA to mapM
; forA to forM
)