{-# OPTIONS --without-K --safe #-}
module Tactic.RingSolver.Core.Expression where
open import Data.Nat.Base using (ℕ)
open import Data.Fin.Base using (Fin)
open import Data.Vec.Base as Vec using (Vec)
open import Algebra
infixl 6 _⊕_
infixl 7 _⊗_
infixr 8 _⊛_
data Expr {a} (A : Set a) (n : ℕ) : Set a where
Κ : A → Expr A n
Ι : Fin n → Expr A n
_⊕_ : Expr A n → Expr A n → Expr A n
_⊗_ : Expr A n → Expr A n → Expr A n
_⊛_ : Expr A n → ℕ → Expr A n
⊝_ : Expr A n → Expr A n
module Eval
{ℓ₁ ℓ₂} (rawRing : RawRing ℓ₁ ℓ₂)
(open RawRing rawRing)
{a} {A : Set a} (⟦_⟧ᵣ : A → Carrier) where
open import Algebra.Definitions.RawSemiring rawSemiring
using (_^′_)
⟦_⟧ : ∀ {n} → Expr A n → Vec Carrier n → Carrier
⟦ Κ x ⟧ ρ = ⟦ x ⟧ᵣ
⟦ Ι x ⟧ ρ = Vec.lookup ρ x
⟦ x ⊕ y ⟧ ρ = ⟦ x ⟧ ρ + ⟦ y ⟧ ρ
⟦ x ⊗ y ⟧ ρ = ⟦ x ⟧ ρ * ⟦ y ⟧ ρ
⟦ ⊝ x ⟧ ρ = - ⟦ x ⟧ ρ
⟦ x ⊛ i ⟧ ρ = ⟦ x ⟧ ρ ^′ i