{-# OPTIONS --without-K --safe #-}
open import Tactic.RingSolver.Core.AlmostCommutativeRing
module Tactic.RingSolver.Core.Polynomial.Reasoning
{a ℓ} (ring : AlmostCommutativeRing a ℓ)
where
open AlmostCommutativeRing ring
open import Relation.Binary.Reasoning.Setoid setoid public
infixr 1 ≪+_ +≫_ ≪*_ *≫_
infixr 0 _⊙_
≪+_ : ∀ {x₁ x₂ y} → x₁ ≈ x₂ → x₁ + y ≈ x₂ + y
≪+ prf = +-cong prf refl
{-# INLINE ≪+_ #-}
+≫_ : ∀ {x y₁ y₂} → y₁ ≈ y₂ → x + y₁ ≈ x + y₂
+≫_ = +-cong refl
{-# INLINE +≫_ #-}
≪*_ : ∀ {x₁ x₂ y} → x₁ ≈ x₂ → x₁ * y ≈ x₂ * y
≪* prf = *-cong prf refl
{-# INLINE ≪*_ #-}
*≫_ : ∀ {x y₁ y₂} → y₁ ≈ y₂ → x * y₁ ≈ x * y₂
*≫_ = *-cong refl
{-# INLINE *≫_ #-}
_⊙_ : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
_⊙_ = trans
{-# INLINE _⊙_ #-}