open import Agda.Builtin.Nat
open import Agda.Builtin.Equality

cong :  {a b} {A : Set a} {B : Set b} {x y : A} 
       (f : A  B)  x  y  f x  f y

cong f refl = refl

_ : 2 + 3  5
_ = refl

id :  {l} {A : Set l}  A  A
id x = x