open import Agda.Builtin.Nat open import Agda.Builtin.Equality cong : ∀ {a b} {A : Set a} {B : Set b} {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y cong f refl = refl _ : 2 + 3 ≡ 5 _ = refl id : ∀ {l} {A : Set l} → A → A id x = x