open import Algebra
module Algebra.Properties.Lattice {l₁ l₂} (L : Lattice l₁ l₂) where
open Lattice L
open import Algebra.Structures
import Algebra.FunctionProperties as P; open P _≈_
open import Relation.Binary
import Relation.Binary.Lattice as R
import Relation.Binary.EqReasoning as EqR; open EqR setoid
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (_⇔_; module Equivalence)
open import Data.Product
∧-idempotent : Idempotent _∧_
∧-idempotent x = begin
x ∧ x ≈⟨ refl ⟨ ∧-cong ⟩ sym (proj₁ absorptive _ _) ⟩
x ∧ (x ∨ x ∧ x) ≈⟨ proj₂ absorptive _ _ ⟩
x ∎
∨-idempotent : Idempotent _∨_
∨-idempotent x = begin
x ∨ x ≈⟨ refl ⟨ ∨-cong ⟩ sym (∧-idempotent _) ⟩
x ∨ x ∧ x ≈⟨ proj₁ absorptive _ _ ⟩
x ∎
∧-∨-isLattice : IsLattice _≈_ _∧_ _∨_
∧-∨-isLattice = record
{ isEquivalence = isEquivalence
; ∨-comm = ∧-comm
; ∨-assoc = ∧-assoc
; ∨-cong = ∧-cong
; ∧-comm = ∨-comm
; ∧-assoc = ∨-assoc
; ∧-cong = ∨-cong
; absorptive = swap absorptive
}
∧-∨-lattice : Lattice _ _
∧-∨-lattice = record
{ _∧_ = _∨_
; _∨_ = _∧_
; isLattice = ∧-∨-isLattice
}
poset : Poset _ _ _
poset = record
{ Carrier = Carrier
; _≈_ = _≈_
; _≤_ = λ x y → x ≈ x ∧ y
; isPartialOrder = record
{ isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = λ {i} {j} i≈j → begin
i ≈⟨ sym $ ∧-idempotent _ ⟩
i ∧ i ≈⟨ ∧-cong refl i≈j ⟩
i ∧ j ∎
; trans = λ {i} {j} {k} i≈i∧j j≈j∧k → begin
i ≈⟨ i≈i∧j ⟩
i ∧ j ≈⟨ ∧-cong refl j≈j∧k ⟩
i ∧ (j ∧ k) ≈⟨ sym (∧-assoc _ _ _) ⟩
(i ∧ j) ∧ k ≈⟨ ∧-cong (sym i≈i∧j) refl ⟩
i ∧ k ∎
}
; antisym = λ {x} {y} x≈x∧y y≈y∧x → begin
x ≈⟨ x≈x∧y ⟩
x ∧ y ≈⟨ ∧-comm _ _ ⟩
y ∧ x ≈⟨ sym y≈y∧x ⟩
y ∎
}
}
open Poset poset using (_≤_; isPartialOrder)
isOrderTheoreticLattice : R.IsLattice _≈_ _≤_ _∨_ _∧_
isOrderTheoreticLattice = record
{ isPartialOrder = isPartialOrder
; supremum = λ x y →
sym (∧-absorbs-∨ x y) ,
(begin
y ≈⟨ sym (∧-absorbs-∨ y x) ⟩
y ∧ (y ∨ x) ≈⟨ ∧-cong refl (∨-comm y x) ⟩
y ∧ (x ∨ y) ∎) ,
(λ z x≤z y≤z → sound (begin
(x ∨ y) ∨ z ≈⟨ ∨-assoc x y z ⟩
x ∨ (y ∨ z) ≈⟨ ∨-cong refl (complete y≤z) ⟩
x ∨ z ≈⟨ complete x≤z ⟩
z ∎))
; infimum = λ x y →
(begin
x ∧ y ≈⟨ ∧-cong (sym (∧-idempotent x)) refl ⟩
(x ∧ x) ∧ y ≈⟨ ∧-assoc x x y ⟩
x ∧ (x ∧ y) ≈⟨ ∧-comm x (x ∧ y) ⟩
(x ∧ y) ∧ x ∎) ,
(begin
x ∧ y ≈⟨ ∧-cong refl (sym (∧-idempotent y)) ⟩
x ∧ (y ∧ y) ≈⟨ sym (∧-assoc x y y) ⟩
(x ∧ y) ∧ y ∎) ,
(λ z z≈z∧x z≈z∧y → begin
z ≈⟨ z≈z∧y ⟩
z ∧ y ≈⟨ ∧-cong z≈z∧x refl ⟩
(z ∧ x) ∧ y ≈⟨ ∧-assoc z x y ⟩
z ∧ (x ∧ y) ∎)
}
where
∧-absorbs-∨ = proj₂ absorptive
complete : ∀ {x y} → x ≤ y → x ∨ y ≈ y
complete {x} {y} x≈x∧y = begin
x ∨ y ≈⟨ ∨-cong x≈x∧y refl ⟩
(x ∧ y) ∨ y ≈⟨ ∨-cong (∧-comm x y) refl ⟩
(y ∧ x) ∨ y ≈⟨ ∨-comm (y ∧ x) y ⟩
y ∨ (y ∧ x) ≈⟨ proj₁ absorptive y x ⟩
y ∎
sound : ∀ {x y} → x ∨ y ≈ y → x ≤ y
sound {x} {y} x∨y≈y = begin
x ≈⟨ sym (∧-absorbs-∨ x y) ⟩
x ∧ (x ∨ y) ≈⟨ ∧-cong refl x∨y≈y ⟩
x ∧ y ∎
orderTheoreticLattice : R.Lattice _ _ _
orderTheoreticLattice = record { isLattice = isOrderTheoreticLattice }
replace-equality : {_≈′_ : Rel Carrier l₂} →
(∀ {x y} → x ≈ y ⇔ (x ≈′ y)) → Lattice _ _
replace-equality {_≈′_} ≈⇔≈′ = record
{ _≈_ = _≈′_
; _∧_ = _∧_
; _∨_ = _∨_
; isLattice = record
{ isEquivalence = record
{ refl = to ⟨$⟩ refl
; sym = λ x≈y → to ⟨$⟩ sym (from ⟨$⟩ x≈y)
; trans = λ x≈y y≈z → to ⟨$⟩ trans (from ⟨$⟩ x≈y) (from ⟨$⟩ y≈z)
}
; ∨-comm = λ x y → to ⟨$⟩ ∨-comm x y
; ∨-assoc = λ x y z → to ⟨$⟩ ∨-assoc x y z
; ∨-cong = λ x≈y u≈v → to ⟨$⟩ ∨-cong (from ⟨$⟩ x≈y) (from ⟨$⟩ u≈v)
; ∧-comm = λ x y → to ⟨$⟩ ∧-comm x y
; ∧-assoc = λ x y z → to ⟨$⟩ ∧-assoc x y z
; ∧-cong = λ x≈y u≈v → to ⟨$⟩ ∧-cong (from ⟨$⟩ x≈y) (from ⟨$⟩ u≈v)
; absorptive = (λ x y → to ⟨$⟩ proj₁ absorptive x y)
, (λ x y → to ⟨$⟩ proj₂ absorptive x y)
}
} where open module E {x y} = Equivalence (≈⇔≈′ {x} {y})