------------------------------------------------------------------------
-- The Agda standard library
--
-- Propositional (intensional) equality
------------------------------------------------------------------------

module Relation.Binary.PropositionalEquality where

open import Function
open import Function.Equality using (Π; _⟶_; ≡-setoid)
open import Level
open import Relation.Unary using (Pred)
open import Relation.Binary
import Relation.Binary.Indexed as I
open import Relation.Binary.HeterogeneousEquality.Core as H using (_≅_)

-- Some of the definitions can be found in the following modules:

open import Relation.Binary.Core public using (_≡_; refl; _≢_)
open import Relation.Binary.PropositionalEquality.Core public

------------------------------------------------------------------------
-- Some properties

subst₂ :  {a b p} {A : Set a} {B : Set b} (P : A  B  Set p)
         {x₁ x₂ y₁ y₂}  x₁  x₂  y₁  y₂  P x₁ y₁  P x₂ y₂
subst₂ P refl refl p = p

cong :  {a b} {A : Set a} {B : Set b}
       (f : A  B) {x y}  x  y  f x  f y
cong f refl = refl

cong-app :  {a b} {A : Set a} {B : A  Set b} {f g : (x : A)  B x} 
           f  g  (x : A)  f x  g x
cong-app refl x = refl

cong₂ :  {a b c} {A : Set a} {B : Set b} {C : Set c}
        (f : A  B  C) {x y u v}  x  y  u  v  f x u  f y v
cong₂ f refl refl = refl

setoid :  {a}  Set a  Setoid _ _
setoid A = record
  { Carrier       = A
  ; _≈_           = _≡_
  ; isEquivalence = isEquivalence
  }

decSetoid :  {a} {A : Set a}  Decidable (_≡_ {A = A})  DecSetoid _ _
decSetoid dec = record
  { _≈_              = _≡_
  ; isDecEquivalence = record
      { isEquivalence = isEquivalence
      ; _≟_           = dec
      }
  }

isPreorder :  {a} {A : Set a}  IsPreorder {A = A} _≡_ _≡_
isPreorder = record
  { isEquivalence = isEquivalence
  ; reflexive     = id
  ; trans         = trans
  }

preorder :  {a}  Set a  Preorder _ _ _
preorder A = record
  { Carrier    = A
  ; _≈_        = _≡_
  ; _∼_        = _≡_
  ; isPreorder = isPreorder
  }

------------------------------------------------------------------------
-- Pointwise equality

infix 4 _≗_

_→-setoid_ :  {a b} (A : Set a) (B : Set b)  Setoid _ _
A →-setoid B = ≡-setoid A (Setoid.indexedSetoid (setoid B))

_≗_ :  {a b} {A : Set a} {B : Set b} (f g : A  B)  Set _
_≗_ {A = A} {B} = Setoid._≈_ (A →-setoid B)

:→-to-Π :  {a b₁ b₂} {A : Set a} {B : I.Setoid _ b₁ b₂} 
          ((x : A)  I.Setoid.Carrier B x)  Π (setoid A) B
:→-to-Π {B = B} f = record { _⟨$⟩_ = f; cong = cong′ }
  where
  open I.Setoid B using (_≈_)

  cong′ :  {x y}  x  y  f x  f y
  cong′ refl = I.Setoid.refl B

→-to-⟶ :  {a b₁ b₂} {A : Set a} {B : Setoid b₁ b₂} 
         (A  Setoid.Carrier B)  setoid A  B
→-to-⟶ = :→-to-Π

------------------------------------------------------------------------
-- Inspect

-- Inspect can be used when you want to pattern match on the result r
-- of some expression e, and you also need to "remember" that r ≡ e.

record Reveal_·_is_ {a b} {A : Set a} {B : A  Set b}
                    (f : (x : A)  B x) (x : A) (y : B x) :
                    Set (a  b) where
  constructor [_]
  field eq : f x  y

inspect :  {a b} {A : Set a} {B : A  Set b}
          (f : (x : A)  B x) (x : A)  Reveal f · x is f x
inspect f x = [ refl ]

-- Example usage:

-- f x y with g x | inspect g x
-- f x y | c z | [ eq ] = ...

------------------------------------------------------------------------
-- Convenient syntax for equational reasoning

-- This is special instance of Relation.Binary.EqReasoning.
-- Rather than instantiating the latter with (setoid A),
-- we reimplement equation chains from scratch
-- since then goals are printed much more readably.

module ≡-Reasoning {a} {A : Set a} where

  infix  3 _∎
  infixr 2 _≡⟨⟩_ _≡⟨_⟩_ _≅⟨_⟩_
  infix  1 begin_

  begin_ : ∀{x y : A}  x  y  x  y
  begin_ x≡y = x≡y

  _≡⟨⟩_ :  (x {y} : A)  x  y  x  y
  _ ≡⟨⟩ x≡y = x≡y

  _≡⟨_⟩_ :  (x {y z} : A)  x  y  y  z  x  z
  _ ≡⟨ x≡y  y≡z = trans x≡y y≡z

  _≅⟨_⟩_ :  (x {y z} : A)  x  y  y  z  x  z
  _ ≅⟨ x≅y  y≡z = trans (H.≅-to-≡ x≅y) y≡z

  _∎ :  (x : A)  x  x
  _∎ _ = refl

------------------------------------------------------------------------
-- Functional extensionality

-- If _≡_ were extensional, then the following statement could be
-- proved.

Extensionality : (a b : Level)  Set _
Extensionality a b =
  {A : Set a} {B : A  Set b} {f g : (x : A)  B x} 
  (∀ x  f x  g x)  f  g

-- If extensionality holds for a given universe level, then it also
-- holds for lower ones.

extensionality-for-lower-levels :
   {a₁ b₁} a₂ b₂ 
  Extensionality (a₁  a₂) (b₁  b₂)  Extensionality a₁ b₁
extensionality-for-lower-levels a₂ b₂ ext f≡g =
  cong  h  lower  h  lift) $
    ext (cong (lift { = b₂})  f≡g  lower { = a₂})

-- Functional extensionality implies a form of extensionality for
-- Π-types.

∀-extensionality :
   {a b} 
  Extensionality a (suc b) 
  {A : Set a} (B₁ B₂ : A  Set b) 
  (∀ x  B₁ x  B₂ x)  (∀ x  B₁ x)  (∀ x  B₂ x)
∀-extensionality ext B₁ B₂ B₁≡B₂ with ext B₁≡B₂
∀-extensionality ext B .B  B₁≡B₂ | refl = refl

------------------------------------------------------------------------
-- Proof irrelevance

isPropositional :  {a}  Set a  Set a
isPropositional A = (a b : A)  a  b

IrrelevantPred :  {a } {A : Set a}  Pred A   Set (  a)
IrrelevantPred P =  {x}  isPropositional (P x)

IrrelevantRel :  {a b } {A : Set a} {B : Set b} 
                REL A B   Set (  a  b)
IrrelevantRel _~_ =  {x y}  isPropositional (x ~ y)

≡-irrelevance :  {a} {A : Set a}  IrrelevantRel (_≡_ {A = A})
≡-irrelevance refl refl = refl

------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.

proof-irrelevance = ≡-irrelevance