module Relation.Binary.PropositionalEquality where
open import Function
open import Function.Equality using (Π; _⟶_; ≡-setoid)
open import Level
open import Relation.Unary using (Pred)
open import Relation.Binary
import Relation.Binary.Indexed as I
open import Relation.Binary.HeterogeneousEquality.Core as H using (_≅_)
open import Relation.Binary.Core public using (_≡_; refl; _≢_)
open import Relation.Binary.PropositionalEquality.Core public
subst₂ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p)
{x₁ x₂ y₁ y₂} → x₁ ≡ x₂ → y₁ ≡ y₂ → P x₁ y₁ → P x₂ y₂
subst₂ P refl refl p = p
cong : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B) {x y} → x ≡ y → f x ≡ f y
cong f refl = refl
cong-app : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} →
f ≡ g → (x : A) → f x ≡ g x
cong-app refl x = refl
cong₂ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
(f : A → B → C) {x y u v} → x ≡ y → u ≡ v → f x u ≡ f y v
cong₂ f refl refl = refl
setoid : ∀ {a} → Set a → Setoid _ _
setoid A = record
{ Carrier = A
; _≈_ = _≡_
; isEquivalence = isEquivalence
}
decSetoid : ∀ {a} {A : Set a} → Decidable (_≡_ {A = A}) → DecSetoid _ _
decSetoid dec = record
{ _≈_ = _≡_
; isDecEquivalence = record
{ isEquivalence = isEquivalence
; _≟_ = dec
}
}
isPreorder : ∀ {a} {A : Set a} → IsPreorder {A = A} _≡_ _≡_
isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = id
; trans = trans
}
preorder : ∀ {a} → Set a → Preorder _ _ _
preorder A = record
{ Carrier = A
; _≈_ = _≡_
; _∼_ = _≡_
; isPreorder = isPreorder
}
infix 4 _≗_
_→-setoid_ : ∀ {a b} (A : Set a) (B : Set b) → Setoid _ _
A →-setoid B = ≡-setoid A (Setoid.indexedSetoid (setoid B))
_≗_ : ∀ {a b} {A : Set a} {B : Set b} (f g : A → B) → Set _
_≗_ {A = A} {B} = Setoid._≈_ (A →-setoid B)
:→-to-Π : ∀ {a b₁ b₂} {A : Set a} {B : I.Setoid _ b₁ b₂} →
((x : A) → I.Setoid.Carrier B x) → Π (setoid A) B
:→-to-Π {B = B} f = record { _⟨$⟩_ = f; cong = cong′ }
where
open I.Setoid B using (_≈_)
cong′ : ∀ {x y} → x ≡ y → f x ≈ f y
cong′ refl = I.Setoid.refl B
→-to-⟶ : ∀ {a b₁ b₂} {A : Set a} {B : Setoid b₁ b₂} →
(A → Setoid.Carrier B) → setoid A ⟶ B
→-to-⟶ = :→-to-Π
record Reveal_·_is_ {a b} {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) (y : B x) :
Set (a ⊔ b) where
constructor [_]
field eq : f x ≡ y
inspect : ∀ {a b} {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) → Reveal f · x is f x
inspect f x = [ refl ]
module ≡-Reasoning {a} {A : Set a} where
infix 3 _∎
infixr 2 _≡⟨⟩_ _≡⟨_⟩_ _≅⟨_⟩_
infix 1 begin_
begin_ : ∀{x y : A} → x ≡ y → x ≡ y
begin_ x≡y = x≡y
_≡⟨⟩_ : ∀ (x {y} : A) → x ≡ y → x ≡ y
_ ≡⟨⟩ x≡y = x≡y
_≡⟨_⟩_ : ∀ (x {y z} : A) → x ≡ y → y ≡ z → x ≡ z
_ ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z
_≅⟨_⟩_ : ∀ (x {y z} : A) → x ≅ y → y ≡ z → x ≡ z
_ ≅⟨ x≅y ⟩ y≡z = trans (H.≅-to-≡ x≅y) y≡z
_∎ : ∀ (x : A) → x ≡ x
_∎ _ = refl
Extensionality : (a b : Level) → Set _
Extensionality a b =
{A : Set a} {B : A → Set b} {f g : (x : A) → B x} →
(∀ x → f x ≡ g x) → f ≡ g
extensionality-for-lower-levels :
∀ {a₁ b₁} a₂ b₂ →
Extensionality (a₁ ⊔ a₂) (b₁ ⊔ b₂) → Extensionality a₁ b₁
extensionality-for-lower-levels a₂ b₂ ext f≡g =
cong (λ h → lower ∘ h ∘ lift) $
ext (cong (lift {ℓ = b₂}) ∘ f≡g ∘ lower {ℓ = a₂})
∀-extensionality :
∀ {a b} →
Extensionality a (suc b) →
{A : Set a} (B₁ B₂ : A → Set b) →
(∀ x → B₁ x ≡ B₂ x) → (∀ x → B₁ x) ≡ (∀ x → B₂ x)
∀-extensionality ext B₁ B₂ B₁≡B₂ with ext B₁≡B₂
∀-extensionality ext B .B B₁≡B₂ | refl = refl
isPropositional : ∀ {a} → Set a → Set a
isPropositional A = (a b : A) → a ≡ b
IrrelevantPred : ∀ {a ℓ} {A : Set a} → Pred A ℓ → Set (ℓ ⊔ a)
IrrelevantPred P = ∀ {x} → isPropositional (P x)
IrrelevantRel : ∀ {a b ℓ} {A : Set a} {B : Set b} →
REL A B ℓ → Set (ℓ ⊔ a ⊔ b)
IrrelevantRel _~_ = ∀ {x y} → isPropositional (x ~ y)
≡-irrelevance : ∀ {a} {A : Set a} → IrrelevantRel (_≡_ {A = A})
≡-irrelevance refl refl = refl
proof-irrelevance = ≡-irrelevance