{-# OPTIONS --without-K #-}
module Fin where
open import Equality.Propositional as P
open import Logical-equivalence hiding (id; _∘_; inverse)
open import Prelude hiding (id)
open import Bijection P.equality-with-J using (_↔_; module _↔_)
open import Equality.Decision-procedures P.equality-with-J
open import Function-universe P.equality-with-J hiding (_∘_)
open import H-level P.equality-with-J
open import H-level.Closure P.equality-with-J
∃-Fin-zero : ∀ {p ℓ} (P : Fin zero → Set p) → ∃ P ↔ ⊥ {ℓ = ℓ}
∃-Fin-zero P = Σ-left-zero
∃-Fin-suc : ∀ {p n} (P : Fin (suc n) → Set p) →
∃ P ↔ P (inj₁ tt) ⊎ ∃ (P ∘ inj₂)
∃-Fin-suc P =
∃ P ↔⟨ ∃-⊎-distrib-right ⟩
∃ (P ∘ inj₁) ⊎ ∃ (P ∘ inj₂) ↔⟨ Σ-left-identity ⊎-cong id ⟩□
P (inj₁ tt) ⊎ ∃ (P ∘ inj₂) □
abstract
Fin-set : ∀ n → Is-set (Fin n)
Fin-set zero = mono₁ 1 ⊥-propositional
Fin-set (suc n) = ⊎-closure 0 (mono 0≤2 ⊤-contractible) (Fin-set n)
where
0≤2 : 0 ≤ 2
0≤2 = ≤-step (≤-step ≤-refl)
private
well-behaved : ∀ {m n} (f : Fin (1 + m) ↔ Fin (1 + n)) →
Well-behaved (_↔_.to f)
well-behaved f {b = i} eq₁ eq₂ = ⊎.inj₁≢inj₂ (
inj₁ tt ≡⟨ sym $ to-from f eq₂ ⟩
from f (inj₁ tt) ≡⟨ to-from f eq₁ ⟩∎
inj₂ i ∎)
where open _↔_
cancel-suc : ∀ {m n} → Fin (1 + m) ↔ Fin (1 + n) → Fin m ↔ Fin n
cancel-suc f =
⊎-left-cancellative f (well-behaved f) (well-behaved $ inverse f)
infix 4 _And_Are-related-by_
_And_Are-related-by_ :
∀ {a} {A : Set a}
(xs ys : List A) → Fin (length xs) ↔ Fin (length ys) → Set a
xs And ys Are-related-by f =
∀ i → lookup xs i ≡ lookup ys (_↔_.to f i)
abstract
cancel-suc-preserves-relatedness :
∀ {a} {A : Set a} (x : A) xs ys
(f : Fin (length (x ∷ xs)) ↔ Fin (length (x ∷ ys))) →
x ∷ xs And x ∷ ys Are-related-by f →
xs And ys Are-related-by cancel-suc f
cancel-suc-preserves-relatedness x xs ys f related = helper
where
open _↔_ f
helper : xs And ys Are-related-by cancel-suc f
helper i with inspect (to (inj₂ i)) | related (inj₂ i)
helper i | inj₂ k with-≡ eq₁ | hyp₁ =
lookup xs i ≡⟨ hyp₁ ⟩
lookup (x ∷ ys) (to (inj₂ i)) ≡⟨ cong (lookup (x ∷ ys)) eq₁ ⟩
lookup (x ∷ ys) (inj₂ k) ≡⟨ refl ⟩∎
lookup ys k ∎
helper i | inj₁ tt with-≡ eq₁ | hyp₁
with inspect (to (inj₁ tt)) | related (inj₁ tt)
helper i | inj₁ tt with-≡ eq₁ | hyp₁ | inj₂ j with-≡ eq₂ | hyp₂ =
lookup xs i ≡⟨ hyp₁ ⟩
lookup (x ∷ ys) (to (inj₂ i)) ≡⟨ cong (lookup (x ∷ ys)) eq₁ ⟩
lookup (x ∷ ys) (inj₁ tt) ≡⟨ refl ⟩
x ≡⟨ hyp₂ ⟩
lookup (x ∷ ys) (to (inj₁ tt)) ≡⟨ cong (lookup (x ∷ ys)) eq₂ ⟩
lookup (x ∷ ys) (inj₂ j) ≡⟨ refl ⟩∎
lookup ys j ∎
helper i | inj₁ tt with-≡ eq₁ | hyp₁ | inj₁ tt with-≡ eq₂ | hyp₂ =
⊥-elim $ well-behaved f eq₁ eq₂
isomorphic-same-size : ∀ {m n} → (Fin m ↔ Fin n) ⇔ m ≡ n
isomorphic-same-size {m} {n} = record
{ to = to m n
; from = λ m≡n → subst (λ n → Fin m ↔ Fin n) m≡n id
}
where
abstract
to : ∀ m n → (Fin m ↔ Fin n) → m ≡ n
to zero zero _ = refl
to (suc m) (suc n) 1+m↔1+n = cong suc $ to m n $ cancel-suc 1+m↔1+n
to zero (suc n) 0↔1+n = ⊥-elim $ _↔_.from 0↔1+n (inj₁ tt)
to (suc m) zero 1+m↔0 = ⊥-elim $ _↔_.to 1+m↔0 (inj₁ tt)