{-# OPTIONS --without-K #-}
open import Equality
module H-level.Closure
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open import Bijection eq as Bijection hiding (id; _∘_)
open Derived-definitions-and-properties eq
import Equality.Decidable-UIP eq as DUIP
open import Equality.Decision-procedures eq
open import H-level eq
open import Logical-equivalence hiding (id; _∘_)
open import Prelude
open import Surjection eq as Surjection hiding (id; _∘_)
⊤-contractible : Contractible ⊤
⊤-contractible = (_ , λ _ → refl _)
abstract
contractible⇔⊤↔ : ∀ {a} {A : Set a} → Contractible A ⇔ (⊤ ↔ A)
contractible⇔⊤↔ = λ {a} {A} → record
{ to = contractible-isomorphic ⊤-contractible
; from = λ ⊤↔A → respects-surjection (_↔_.surjection ⊤↔A) 0
⊤-contractible
}
abstract
¬-⊥-contractible : ∀ {ℓ} → ¬ Contractible (⊥ {ℓ = ℓ})
¬-⊥-contractible = ⊥-elim ∘ proj₁
⊥-propositional : ∀ {ℓ} → Is-proposition (⊥ {ℓ = ℓ})
⊥-propositional =
_⇔_.from propositional⇔irrelevant (λ x → ⊥-elim x)
⊥↔uninhabited : ∀ {a ℓ} {A : Set a} → ¬ A → ⊥ {ℓ = ℓ} ↔ A
⊥↔uninhabited ¬A = record
{ surjection = record
{ logical-equivalence = record
{ to = ⊥-elim
; from = ⊥-elim ∘ ¬A
}
; right-inverse-of = ⊥-elim ∘ ¬A
}
; left-inverse-of = λ ()
}
uninhabited-propositional : ∀ {a} {A : Set a} →
¬ A → Is-proposition A
uninhabited-propositional ¬A =
respects-surjection (_↔_.surjection $ ⊥↔uninhabited {ℓ = # 0} ¬A) 1
⊥-propositional
abstract
¬-Bool-propositional : ¬ Is-proposition Bool
¬-Bool-propositional propositional =
Bool.true≢false $
(_⇔_.to propositional⇔irrelevant propositional) true false
Bool-set : Is-set Bool
Bool-set = DUIP.decidable⇒set Bool._≟_
abstract
¬-ℕ-propositional : ¬ Is-proposition ℕ
¬-ℕ-propositional ℕ-prop =
ℕ.0≢+ $ _⇔_.to propositional⇔irrelevant ℕ-prop 0 1
ℕ-set : Is-set ℕ
ℕ-set = DUIP.decidable⇒set ℕ._≟_
Π-closure-contractible⇔extensionality :
∀ {a b} {A : Set a} →
({B : A → Set b} →
(∀ x → Contractible (B x)) → Contractible ((x : A) → B x)) ⇔
({B : A → Set b} → Extensionality′ A B)
Π-closure-contractible⇔extensionality {b = b} {A} = record
{ to = ⇒
; from = λ ext cB →
((λ x → proj₁ (cB x)) , λ f → ext λ x → proj₂ (cB x) (f x))
}
where
⇒ : ({B : A → Set b} →
(∀ x → Contractible (B x)) → Contractible ((x : A) → B x)) →
(∀ {B} → Extensionality′ A B)
⇒ closure {B} {f} {g} f≡g =
f ≡⟨ sym (cong (λ c → λ x → proj₁ (c x)) $
proj₂ contractible (λ x → (f x , f≡g x))) ⟩
(λ x → proj₁ (proj₁ contractible x)) ≡⟨ cong (λ c → λ x → proj₁ (c x)) $
proj₂ contractible (λ x → (g x , refl (g x))) ⟩∎
g ∎
where
contractible : Contractible ((x : A) → Singleton (g x))
contractible = closure (singleton-contractible ∘ g)
abstract
extensionality⇒well-behaved-extensionality :
∀ {a b} {A : Set a} →
({B : A → Set b} → Extensionality′ A B) →
{B : A → Set b} → Well-behaved-extensionality A B
extensionality⇒well-behaved-extensionality {A = A} ext {B} =
(λ {_} → ext′) , λ f →
ext′ (refl ∘ f) ≡⟨ trans-symˡ _ ⟩∎
refl f ∎
where
ext′ : Extensionality′ A B
ext′ = to (from ext)
where open _⇔_ Π-closure-contractible⇔extensionality
ext⁻¹ : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} →
f ≡ g → (∀ x → f x ≡ g x)
ext⁻¹ f≡g = λ x → cong (λ h → h x) f≡g
abstract
ext⁻¹-refl : ∀ {a b} {A : Set a} {B : A → Set b}
(f : (x : A) → B x) {x} →
ext⁻¹ (refl f) x ≡ refl (f x)
ext⁻¹-refl f {x} = cong-refl (λ h → h x) {x = f}
ext-surj : ∀ {a b} {A : Set a} →
({B : A → Set b} → Extensionality′ A B) →
{B : A → Set b} {f g : (x : A) → B x} →
(∀ x → f x ≡ g x) ↠ (f ≡ g)
ext-surj {b = b} {A} ext {B} = record
{ logical-equivalence = record
{ to = to
; from = ext⁻¹
}
; right-inverse-of =
elim (λ {f g} f≡g → to (ext⁻¹ f≡g) ≡ f≡g) λ h →
proj₁ ext′ (ext⁻¹ (refl h)) ≡⟨ cong (proj₁ ext′) (proj₁ ext′ λ _ →
ext⁻¹-refl h) ⟩
proj₁ ext′ (refl ∘ h) ≡⟨ proj₂ ext′ h ⟩∎
refl h ∎
}
where
ext′ : {B : A → Set b} → Well-behaved-extensionality A B
ext′ = extensionality⇒well-behaved-extensionality ext
to : {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g
to = proj₁ ext′
Π-closure : ∀ {a b} {A : Set a} →
({B : A → Set b} → Extensionality′ A B) →
∀ {B : A → Set b} n →
(∀ x → H-level n (B x)) → H-level n ((x : A) → B x)
Π-closure ext zero =
_⇔_.from Π-closure-contractible⇔extensionality ext
Π-closure ext (suc n) = λ h f g →
respects-surjection (ext-surj ext) n $
Π-closure ext n (λ x → h x (f x) (g x))
implicit-Π-closure :
∀ {a b} {A : Set a} →
({B : A → Set b} → Extensionality′ A B) →
∀ {B : A → Set b} n →
(∀ x → H-level n (B x)) → H-level n ({x : A} → B x)
implicit-Π-closure {A = A} ext {B} n =
respects-surjection
(_↔_.surjection $ Bijection.inverse implicit-Π↔Π) n ∘
Π-closure ext n
¬-propositional :
∀ {a} {A : Set a} →
({B : A → Set} → Extensionality′ A B) →
Is-proposition (¬ A)
¬-propositional ext = Π-closure ext 1 (λ _ → ⊥-propositional)
abstract
Σ-closure : ∀ {a b} {A : Set a} {B : A → Set b} n →
H-level n A → (∀ x → H-level n (B x)) → H-level n (Σ A B)
Σ-closure {A = A} {B} zero (x , irrA) hB =
((x , proj₁ (hB x)) , λ p →
(x , proj₁ (hB x)) ≡⟨ elim (λ {x y} _ → _≡_ {A = Σ A B} (x , proj₁ (hB x))
(y , proj₁ (hB y)))
(λ _ → refl _)
(irrA (proj₁ p)) ⟩
(proj₁ p , proj₁ (hB (proj₁ p))) ≡⟨ cong (_,_ (proj₁ p)) (proj₂ (hB (proj₁ p)) (proj₂ p)) ⟩∎
p ∎)
Σ-closure {B = B} (suc n) hA hB = λ p₁ p₂ →
respects-surjection (_↔_.surjection Σ-≡,≡↔≡) n $
Σ-closure n (hA (proj₁ p₁) (proj₁ p₂))
(λ pr₁p₁≡pr₁p₂ →
hB (proj₁ p₂) (subst B pr₁p₁≡pr₁p₂ (proj₂ p₁)) (proj₂ p₂))
×-closure : ∀ {a b} {A : Set a} {B : Set b} n →
H-level n A → H-level n B → H-level n (A × B)
×-closure n hA hB = Σ-closure n hA (const hB)
abstract
↑-closure : ∀ {a b} {A : Set a} n → H-level n A → H-level n (↑ b A)
↑-closure =
respects-surjection (_↔_.surjection (Bijection.inverse ↑↔))
W-unfolding : ∀ {a b} {A : Set a} {B : A → Set b} →
W A B ↔ ∃ λ (x : A) → B x → W A B
W-unfolding = record
{ surjection = record
{ logical-equivalence = record
{ to = λ w → head w , tail w
; from = uncurry sup
}
; right-inverse-of = refl
}
; left-inverse-of = left-inverse-of
}
where
left-inverse-of : (w : W _ _) → sup (head w) (tail w) ≡ w
left-inverse-of (sup x f) = refl (sup x f)
abstract
W-≡,≡↠≡ : ∀ {a b} {A : Set a} {B : A → Set b} →
(∀ {x} {C : B x → Set (a ⊔ b)} → Extensionality′ (B x) C) →
∀ {x y} {f : B x → W A B} {g : B y → W A B} →
(∃ λ (p : x ≡ y) → ∀ i → f i ≡ g (subst B p i)) ↠
(sup x f ≡ sup y g)
W-≡,≡↠≡ {a} {A = A} {B} ext {x} {y} {f} {g} =
(∃ λ (p : x ≡ y) → ∀ i → f i ≡ g (subst B p i)) ↠⟨ Surjection.∃-cong lemma ⟩
(∃ λ (p : x ≡ y) → subst (λ x → B x → W A B) p f ≡ g) ↠⟨ _↔_.surjection Σ-≡,≡↔≡ ⟩
(_≡_ {A = ∃ λ (x : A) → B x → W A B} (x , f) (y , g)) ↠⟨ ↠-≡ (_↔_.surjection (Bijection.inverse (W-unfolding {A = A} {B = B}))) ⟩□
(sup x f ≡ sup y g) □
where
lemma : (p : x ≡ y) →
(∀ i → f i ≡ g (subst B p i)) ↠
(subst (λ x → B x → W A B) p f ≡ g)
lemma p = elim
(λ {x y} p → (f : B x → W A B) (g : B y → W A B) →
(∀ i → f i ≡ g (subst B p i)) ↠
(subst (λ x → B x → W A B) p f ≡ g))
(λ x f g →
(∀ i → f i ≡ g (subst B (refl x) i)) ↠⟨ subst (λ h → (∀ i → f i ≡ g (h i)) ↠ (∀ i → f i ≡ g i))
(sym (lower-extensionality₂ a ext (subst-refl B)))
Surjection.id ⟩
(∀ i → f i ≡ g i) ↠⟨ ext-surj ext ⟩
(f ≡ g) ↠⟨ subst (λ h → (f ≡ g) ↠ (h ≡ g))
(sym $ subst-refl (λ x' → B x' → W A B) f)
Surjection.id ⟩□
(subst (λ x → B x → W A B) (refl x) f ≡ g) □)
p f g
¬-W-closure-contractible : ∀ {a b} →
¬ (∀ {A : Set a} {B : A → Set b} →
Contractible A → (∀ x → Contractible (B x)) →
Contractible (W A B))
¬-W-closure-contractible closure =
inhabited⇒W-empty (const (lift tt)) $
proj₁ $
closure (↑-closure 0 ⊤-contractible)
(const (↑-closure 0 ⊤-contractible))
¬-W-closure : ∀ {a b} →
¬ (∀ {A : Set a} {B : A → Set b} n →
H-level n A → (∀ x → H-level n (B x)) → H-level n (W A B))
¬-W-closure closure = ¬-W-closure-contractible (closure 0)
W-closure :
∀ {a b} {A : Set a} {B : A → Set b} →
(∀ {x} {C : B x → Set (a ⊔ b)} → Extensionality′ (B x) C) →
∀ n → H-level (1 + n) A → H-level (1 + n) (W A B)
W-closure {A = A} {B} ext n h = closure
where
closure : (x y : W A B) → H-level n (x ≡ y)
closure (sup x f) (sup y g) =
respects-surjection (W-≡,≡↠≡ ext) n $
Σ-closure n (h x y) (λ _ →
Π-closure ext n (λ i → closure (f _) (g _)))
abstract
counit : ∀ {a} {A : Set a} → Contractible A → A
counit = proj₁
cojoin : ∀ {a} {A : Set a} →
({B : A → Set a} → Extensionality′ A B) →
Contractible A → Contractible (Contractible A)
cojoin {A = A} ext contr = contr₃
where
x : A
x = proj₁ contr
contr₁ : Contractible (∀ y → x ≡ y)
contr₁ = Π-closure ext 0 (mono₁ 0 contr x)
contr₂ : (x : A) → Contractible (∀ y → x ≡ y)
contr₂ x =
subst (λ x → Contractible (∀ y → x ≡ y)) (proj₂ contr x) contr₁
contr₃ : Contractible (∃ λ (x : A) → ∀ y → x ≡ y)
contr₃ = Σ-closure 0 contr contr₂
¬-Contractible-contractible :
¬ ({A : Set} → Contractible (Contractible A))
¬-Contractible-contractible contr = proj₁ $ proj₁ $ contr {A = ⊥}
Contractible-propositional :
∀ {a} {A : Set a} →
({B : A → Set a} → Extensionality′ A B) →
Is-proposition (Contractible A)
Contractible-propositional ext =
[inhabited⇒contractible]⇒propositional (cojoin ext)
H-level-propositional :
∀ {a} → Extensionality a a →
∀ {A : Set a} n → Is-proposition (H-level n A)
H-level-propositional ext zero = Contractible-propositional ext
H-level-propositional {A} ext (suc n) =
Π-closure ext 1 λ x →
Π-closure ext 1 λ y →
H-level-propositional ext {A = x ≡ y} n
abstract
sum-as-pair : ∀ {a b} {A : Set a} {B : Set b} →
(A ⊎ B) ↔ (∃ λ x → if x then ↑ b A else ↑ a B)
sum-as-pair {a} {b} {A} {B} = record
{ surjection = record
{ logical-equivalence = record
{ to = to
; from = from
}
; right-inverse-of = to∘from
}
; left-inverse-of = [ refl ∘ inj₁ {B = B} , refl ∘ inj₂ {A = A} ]
}
where
to : A ⊎ B → (∃ λ x → if x then ↑ b A else ↑ a B)
to = [ _,_ true ∘ lift , _,_ false ∘ lift ]
from : (∃ λ x → if x then ↑ b A else ↑ a B) → A ⊎ B
from (true , x) = inj₁ $ lower x
from (false , y) = inj₂ $ lower y
to∘from : (y : ∃ λ x → if x then ↑ b A else ↑ a B) →
to (from y) ≡ y
to∘from (true , x) = refl _
to∘from (false , y) = refl _
¬-⊎-propositional : ∀ {a b} {A : Set a} {B : Set b} →
A → B → ¬ Is-proposition (A ⊎ B)
¬-⊎-propositional {A = A} {B} x y hA⊎B =
⊎.inj₁≢inj₂ {A = A} {B = B} $ proj₁ $ hA⊎B (inj₁ x) (inj₂ y)
¬-⊎-closure : ∀ {a b} →
¬ (∀ {A : Set a} {B : Set b} n →
H-level n A → H-level n B → H-level n (A ⊎ B))
¬-⊎-closure ⊎-closure =
¬-⊎-propositional (lift tt) (lift tt) $
mono₁ 0 $
⊎-closure 0 (↑-closure 0 ⊤-contractible)
(↑-closure 0 ⊤-contractible)
⊎-closure :
∀ {a b} {A : Set a} {B : Set b} n →
H-level (2 + n) A → H-level (2 + n) B → H-level (2 + n) (A ⊎ B)
⊎-closure {a} {b} {A} {B} n hA hB =
respects-surjection
(_↔_.surjection $ Bijection.inverse sum-as-pair)
(2 + n)
(Σ-closure (2 + n) Bool-2+n if-2+n)
where
Bool-2+n : H-level (2 + n) Bool
Bool-2+n = mono (m≤m+n 2 n) Bool-set
if-2+n : ∀ x → H-level (2 + n) (if x then ↑ b A else ↑ a B)
if-2+n true = respects-surjection
(_↔_.surjection $ Bijection.inverse ↑↔)
(2 + n) hA
if-2+n false = respects-surjection
(_↔_.surjection $ Bijection.inverse ↑↔)
(2 + n) hB
Dec-closure-propositional :
∀ {a} {A : Set a} →
({B : A → Set} → Extensionality′ A B) →
Is-proposition A → Is-proposition (Dec A)
Dec-closure-propositional {A = A} ext p =
_⇔_.from propositional⇔irrelevant irrelevant
where
irrelevant : Proof-irrelevant (Dec A)
irrelevant (inj₁ a) (inj₁ a′) = cong (inj₁ {B = ¬ A}) $ proj₁ $ p a a′
irrelevant (inj₁ a) (inj₂ ¬a) = ⊥-elim (¬a a)
irrelevant (inj₂ ¬a) (inj₁ a) = ⊥-elim (¬a a)
irrelevant (inj₂ ¬a) (inj₂ ¬a′) =
cong (inj₂ {A = A}) $ proj₁ $ ¬-propositional ext ¬a ¬a′
Xor-closure-propositional :
∀ {a b} {A : Set a} {B : Set b} →
Extensionality (a ⊔ b) (# 0) →
Is-proposition A → Is-proposition B →
Is-proposition (A Xor B)
Xor-closure-propositional {ℓa} {ℓb} {A} {B} ext pA pB =
_⇔_.from propositional⇔irrelevant irr
where
irr : (x y : A Xor B) → x ≡ y
irr (inj₁ (a , ¬b)) (inj₂ (¬a , b)) = ⊥-elim (¬a a)
irr (inj₂ (¬a , b)) (inj₁ (a , ¬b)) = ⊥-elim (¬b b)
irr (inj₁ (a , ¬b)) (inj₁ (a′ , ¬b′)) =
cong₂ (λ x y → inj₁ (x , y))
(_⇔_.to propositional⇔irrelevant pA a a′)
(lower-extensionality ℓa _ ext λ b → ⊥-elim (¬b b))
irr (inj₂ (¬a , b)) (inj₂ (¬a′ , b′)) =
cong₂ (λ x y → inj₂ (x , y))
(lower-extensionality ℓb _ ext λ a → ⊥-elim (¬a a))
(_⇔_.to propositional⇔irrelevant pB b b′)
¬-Xor-closure-contractible : ∀ {a b} →
¬ ({A : Set a} {B : Set b} →
Contractible A → Contractible B → Contractible (A Xor B))
¬-Xor-closure-contractible closure
with proj₁ $ closure (↑-closure 0 ⊤-contractible)
(↑-closure 0 ⊤-contractible)
... | inj₁ (_ , ¬⊤) = ¬⊤ _
... | inj₂ (¬⊤ , _) = ¬⊤ _
module Alternative-proof where
⊎-closure-set : {A B : Set} →
Is-set A → Is-set B → Is-set (A ⊎ B)
⊎-closure-set {A} {B} A-set B-set =
_⇔_.from set⇔UIP (DUIP.constant⇒UIP c)
where
c : (x y : A ⊎ B) → ∃ λ (f : x ≡ y → x ≡ y) → DUIP.Constant f
c (inj₁ x) (inj₁ y) = (cong inj₁ ∘ ⊎.cancel-inj₁ , λ p q → cong (cong inj₁) $ proj₁ $ A-set x y (⊎.cancel-inj₁ p) (⊎.cancel-inj₁ q))
c (inj₂ x) (inj₂ y) = (cong inj₂ ∘ ⊎.cancel-inj₂ , λ p q → cong (cong inj₂) $ proj₁ $ B-set x y (⊎.cancel-inj₂ p) (⊎.cancel-inj₂ q))
c (inj₁ x) (inj₂ y) = (⊥-elim ∘ ⊎.inj₁≢inj₂ , λ _ → ⊥-elim ∘ ⊎.inj₁≢inj₂)
c (inj₂ x) (inj₁ y) = (⊥-elim ∘ ⊎.inj₁≢inj₂ ∘ sym , λ _ → ⊥-elim ∘ ⊎.inj₁≢inj₂ ∘ sym)
⊎-closure′ :
∀ {A B : Set} n →
H-level (2 + n) A → H-level (2 + n) B → H-level (2 + n) (A ⊎ B)
⊎-closure′ zero = ⊎-closure-set
⊎-closure′ {A} {B} (suc n) = clos
where
clos : H-level (3 + n) A → H-level (3 + n) B → H-level (3 + n) (A ⊎ B)
clos hA hB (inj₁ x) (inj₁ y) = respects-surjection (_↔_.surjection ≡↔inj₁≡inj₁) (2 + n) (hA x y)
clos hA hB (inj₂ x) (inj₂ y) = respects-surjection (_↔_.surjection ≡↔inj₂≡inj₂) (2 + n) (hB x y)
clos hA hB (inj₁ x) (inj₂ y) = ⊥-elim ∘ ⊎.inj₁≢inj₂
clos hA hB (inj₂ x) (inj₁ y) = ⊥-elim ∘ ⊎.inj₁≢inj₂ ∘ sym