module lps.ProofSearch where open import Data.Empty open import Data.Unit open import Data.Product as Prod open import Function open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import lib.Nullary open import lib.Context as Con import lps.IMLL as IMLL import lps.Equivalence as Equivalence module Prove (Pr : Set) (_≟_ : (x y : Pr) → Dec (x ≡ y)) where open IMLL Pr open Con.Context open IMLL.Type Pr open Equivalence Pr _≟_ prove : (Γ : Con ty) (σ : ty) {_ : dec (⊢-dec Γ σ) (const ⊤) (const ⊥)}→ Γ ⊢ σ prove Γ σ {pr} = tactics (uncurry ⊢-dec) (Γ , σ) {pr}