------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of the heterogeneous prefix relation
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

module Data.List.Relation.Binary.Prefix.Heterogeneous.Properties where

open import Data.Empty
open import Data.List.Relation.Unary.All as All using (All; []; _∷_)
import Data.List.Relation.Unary.All.Properties as All
open import Data.List.Base as List hiding (map; uncons)
open import Data.List.Membership.Propositional.Properties using ([]∈inits)
open import Data.List.Relation.Binary.Pointwise using (Pointwise; []; _∷_)
open import Data.List.Relation.Binary.Prefix.Heterogeneous as Prefix hiding (PrefixView; _++_)
open import Data.Nat.Base using (; zero; suc; _≤_; z≤n; s≤s)
open import Data.Nat.Properties using (suc-injective)
open import Data.Product as Prod using (_×_; _,_; proj₁; proj₂; uncurry)
open import Function

open import Relation.Nullary using (yes; no; ¬_)
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Unary as U using (Pred)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_)

------------------------------------------------------------------------
-- First as a decidable partial order (once made homogeneous)

module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where

  fromPointwise : Pointwise R  Prefix R
  fromPointwise []       = []
  fromPointwise (r  rs) = r  fromPointwise rs

  toPointwise :  {as bs}  length as  length bs 
                Prefix R as bs  Pointwise R as bs
  toPointwise {bs = []} eq [] = []
  toPointwise {bs = _  _} () []
  toPointwise eq (r  rs) = r  toPointwise (suc-injective eq) rs

module _ {a b c r s t} {A : Set a} {B : Set b} {C : Set c}
         {R : REL A B r} {S : REL B C s} {T : REL A C t} where

  trans : Trans R S T  Trans (Prefix R) (Prefix S) (Prefix T)
  trans rs⇒t []       ss       = []
  trans rs⇒t (r  rs) (s  ss) = rs⇒t r s  trans rs⇒t rs ss

module _ {a b r s e} {A : Set a} {B : Set b}
         {R : REL A B r} {S : REL B A s} {E : REL A B e} where

  antisym : Antisym R S E  Antisym (Prefix R) (Prefix S) (Pointwise E)
  antisym rs⇒e []       []       = []
  antisym rs⇒e (r  rs) (s  ss) = rs⇒e r s  antisym rs⇒e rs ss

------------------------------------------------------------------------
-- length

module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where

  length-mono :  {as bs}  Prefix R as bs  length as  length bs
  length-mono []       = z≤n
  length-mono (r  rs) = s≤s (length-mono rs)

------------------------------------------------------------------------
-- _++_

module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where

  ++⁺ :  {as bs cs ds}  Pointwise R as bs 
        Prefix R cs ds  Prefix R (as ++ cs) (bs ++ ds)
  ++⁺ []       cs⊆ds = cs⊆ds
  ++⁺ (r  rs) cs⊆ds = r  (++⁺ rs cs⊆ds)

  ++⁻ :  {as bs cs ds}  length as  length bs 
        Prefix R (as ++ cs) (bs ++ ds)  Prefix R cs ds
  ++⁻ {[]}    {[]}    eq rs       = rs
  ++⁻ {_  _} {_  _} eq (_  rs) = ++⁻ (suc-injective eq) rs
  ++⁻ {[]} {_  _} ()
  ++⁻ {_  _} {[]} ()

------------------------------------------------------------------------
-- map

module _ {a b c d r} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
         {R : REL C D r} where

  map⁺ :  {as bs} (f : A  C) (g : B  D) 
         Prefix  a b  R (f a) (g b)) as bs 
         Prefix R (List.map f as) (List.map g bs)
  map⁺ f g []       = []
  map⁺ f g (r  rs) = r  map⁺ f g rs

  map⁻ :  {as bs} (f : A  C) (g : B  D) 
         Prefix R (List.map f as) (List.map g bs) 
         Prefix  a b  R (f a) (g b)) as bs
  map⁻ {[]}     {bs}     f g rs       = []
  map⁻ {a  as} {[]}     f g ()
  map⁻ {a  as} {b  bs} f g (r  rs) = r  map⁻ f g rs

------------------------------------------------------------------------
-- filter

module _ {a b r p q} {A : Set a} {B : Set b} {R : REL A B r}
         {P : Pred A p} {Q : Pred B q} (P? : U.Decidable P) (Q? : U.Decidable Q)
         (P⇒Q :  {a b}  R a b  P a  Q b) (Q⇒P :  {a b}  R a b  Q b  P a)
         where

  filter⁺ :  {as bs}  Prefix R as bs  Prefix R (filter P? as) (filter Q? bs)
  filter⁺ [] = []
  filter⁺ {a  as} {b  bs} (r  rs) with P? a | Q? b
  ... | yes pa | yes qb = r  filter⁺ rs
  ... | yes pa | no ¬qb = ⊥-elim (¬qb (P⇒Q r pa))
  ... | no ¬pa | yes qb = ⊥-elim (¬pa (Q⇒P r qb))
  ... | no ¬pa | no ¬qb = filter⁺ rs

------------------------------------------------------------------------
-- take

module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where

  take⁺ :  {as bs} n  Prefix R as bs 
          Prefix R (take n as) (take n bs)
  take⁺ zero    rs       = []
  take⁺ (suc n) []       = []
  take⁺ (suc n) (r  rs) = r  take⁺ n rs

  take⁻ :  {as bs} n 
          Prefix R (take n as) (take n bs) 
          Prefix R (drop n as) (drop n bs) 
          Prefix R as bs
  take⁻                   zero    hds       tls = tls
  take⁻ {[]}              (suc n) hds       tls = []
  take⁻ {a  as} {[]}     (suc n) ()        tls
  take⁻ {a  as} {b  bs} (suc n) (r  hds) tls = r  take⁻ n hds tls

------------------------------------------------------------------------
-- drop

  drop⁺ :  {as bs} n  Prefix R as bs  Prefix R (drop n as) (drop n bs)
  drop⁺ zero    rs       = rs
  drop⁺ (suc n) []       = []
  drop⁺ (suc n) (r  rs) = drop⁺ n rs

  drop⁻ :  {as bs} n  Pointwise R (take n as) (take n bs) 
          Prefix R (drop n as) (drop n bs)  Prefix R as bs
  drop⁻                 zero    hds       tls = tls
  drop⁻ {[]}            (suc n) hds       tls = []
  drop⁻ {_  _} {[]}    (suc n) ()        tls
  drop⁻ {_  _} {_  _} (suc n) (r  hds) tls = r  (drop⁻ n hds tls)

------------------------------------------------------------------------
-- replicate

  replicate⁺ :  {m n a b}  m  n  R a b 
               Prefix R (replicate m a) (replicate n b)
  replicate⁺ z≤n       r = []
  replicate⁺ (s≤s m≤n) r = r  replicate⁺ m≤n r

  replicate⁻ :  {m n a b}  m  0 
               Prefix R (replicate m a) (replicate n b)  R a b
  replicate⁻ {zero}  {n}     m≢0 r  = ⊥-elim (m≢0 P.refl)
  replicate⁻ {suc m} {zero}  m≢0 ()
  replicate⁻ {suc m} {suc n} m≢0 rs = Prefix.head rs

------------------------------------------------------------------------
-- inits

module _ {a r} {A : Set a} {R : Rel A r} where

  inits⁺ :  {as}  Pointwise R as as  All (flip (Prefix R) as) (inits as)
  inits⁺ []       = []  []
  inits⁺ (r  rs) = []  All.map⁺ (All.map (r ∷_) (inits⁺ rs))

  inits⁻ :  {as}  All (flip (Prefix R) as) (inits as)  Pointwise R as as
  inits⁻ {as = []}     rs       = []
  inits⁻ {as = a  as} (r  rs) =
    let (hd , tls) = All.unzip (All.map uncons (All.map⁻ rs)) in
    All.lookup hd ([]∈inits as)  inits⁻ tls

------------------------------------------------------------------------
-- zip(With)

module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
         {d e f} {D : Set d} {E : Set e} {F : Set f}
         {r s t} {R : REL A D r} {S : REL B E s} {T : REL C F t} where

  zipWith⁺ :  {as bs ds es} {f : A  B  C} {g : D  E  F} 
    (∀ {a b c d}  R a c  S b d  T (f a b) (g c d)) 
    Prefix R as ds  Prefix S bs es 
    Prefix T (zipWith f as bs) (zipWith g ds es)
  zipWith⁺ f []       ss       = []
  zipWith⁺ f (r  rs) []       = []
  zipWith⁺ f (r  rs) (s  ss) = f r s  zipWith⁺ f rs ss

module _ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
         {r s} {R : REL A C r} {S : REL B D s} where

  private
    R×S : REL (A × B) (C × D) _
    R×S (a , b) (c , d) = R a c × S b d

  zip⁺ :  {as bs cs ds}  Prefix R as cs  Prefix S bs ds 
         Prefix R×S (zip as bs) (zip cs ds)
  zip⁺ = zipWith⁺ _,_

------------------------------------------------------------------------
-- Irrelevance

module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where

  irrelevant : Irrelevant R  Irrelevant (Prefix R)
  irrelevant R-irr []       []         = P.refl
  irrelevant R-irr (r  rs) (r′  rs′) =
    P.cong₂ _∷_ (R-irr r r′) (irrelevant R-irr rs rs′)

------------------------------------------------------------------------
-- Decidability

  prefix? : Decidable R  Decidable (Prefix R)
  prefix? R? []       bs       = yes []
  prefix? R? (a  as) []       = no  ())
  prefix? R? (a  as) (b  bs) = Dec.map′ (uncurry _∷_) uncons
                               $ R? a b ×-dec prefix? R? as bs