{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Binary.Sublist.Propositional.Properties {a} {A : Set a} where
open import Data.List using (map)
open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Data.List.Relation.Unary.Any.Properties using (here-injective; there-injective)
open import Data.List.Relation.Binary.Sublist.Propositional
hiding (map)
import Data.List.Relation.Binary.Sublist.Setoid.Properties
as SetoidProperties
open import Function
open import Relation.Binary.PropositionalEquality as P hiding ([_])
open import Relation.Unary as U using (Pred)
open SetoidProperties (P.setoid A) public
hiding (map⁺)
module _ {b} {B : Set b} where
map⁺ : ∀ {as bs} (f : A → B) → as ⊆ bs → map f as ⊆ map f bs
map⁺ f = SetoidProperties.map⁺ (setoid A) (setoid B) (cong f)
module _ {p} {P : Pred A p} where
lookup-injective : ∀ {xs ys} {p : xs ⊆ ys} {v w : Any P xs} →
lookup p v ≡ lookup p w → v ≡ w
lookup-injective {p = []} {}
lookup-injective {p = _ ∷ʳ _} {v} {w} =
lookup-injective ∘′ there-injective
lookup-injective {p = x≡y ∷ _} {here pv} {here pw} =
cong here ∘′ subst-injective x≡y ∘′ here-injective
lookup-injective {p = _ ∷ _} {there v} {there w} =
cong there ∘′ lookup-injective ∘′ there-injective
lookup-injective {p = _ ∷ _} {here _} {there _} ()
lookup-injective {p = _ ∷ _} {there _} {here _} ()