{-# OPTIONS --without-K --safe #-}
module Data.Nat.Coprimality where
open import Data.Empty
open import Data.Fin using (toℕ; fromℕ≤)
open import Data.Fin.Properties using (toℕ-fromℕ≤)
open import Data.Nat
open import Data.Nat.Divisibility
open import Data.Nat.GCD
open import Data.Nat.GCD.Lemmas
open import Data.Nat.Primality
open import Data.Nat.Properties
open import Data.Product as Prod
open import Function
open import Level using (0ℓ)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; cong; subst; module ≡-Reasoning)
open import Relation.Nullary
open import Relation.Binary
Coprime : Rel ℕ 0ℓ
Coprime m n = ∀ {i} → i ∣ m × i ∣ n → i ≡ 1
coprime-gcd : ∀ {m n} → Coprime m n → GCD m n 1
coprime-gcd {m} {n} c = GCD.is (1∣ m , 1∣ n) greatest
where
greatest : ∀ {d} → d ∣ m × d ∣ n → d ∣ 1
greatest cd with c cd
... | refl = 1∣ 1
gcd-coprime : ∀ {m n} → GCD m n 1 → Coprime m n
gcd-coprime g cd with GCD.greatest g cd
... | divides q eq = i*j≡1⇒j≡1 q _ (P.sym eq)
private
0≢1 : 0 ≢ 1
0≢1 ()
2+≢1 : ∀ {n} → suc (suc n) ≢ 1
2+≢1 ()
coprime? : Decidable Coprime
coprime? i j with gcd i j
... | (0 , g) = no (0≢1 ∘ GCD.unique g ∘ coprime-gcd)
... | (1 , g) = yes (gcd-coprime g)
... | (suc (suc d) , g) = no (2+≢1 ∘ GCD.unique g ∘ coprime-gcd)
sym : Symmetric Coprime
sym c = c ∘ swap
1-coprimeTo : ∀ m → Coprime 1 m
1-coprimeTo m = ∣1⇒≡1 ∘ proj₁
0-coprimeTo-m⇒m≡1 : ∀ {m} → Coprime 0 m → m ≡ 1
0-coprimeTo-m⇒m≡1 {m} c = c (m ∣0 , ∣-refl)
coprime-+ : ∀ {m n} → Coprime m n → Coprime (n + m) n
coprime-+ c (d₁ , d₂) = c (∣m+n∣m⇒∣n d₁ d₂ , d₂)
Bézout-coprime : ∀ {i j d} →
Bézout.Identity (suc d) (i * suc d) (j * suc d) →
Coprime i j
Bézout-coprime (Bézout.+- x y eq) (divides q₁ refl , divides q₂ refl) =
lem₁₀ y q₂ x q₁ eq
Bézout-coprime (Bézout.-+ x y eq) (divides q₁ refl , divides q₂ refl) =
lem₁₀ x q₁ y q₂ eq
coprime-Bézout : ∀ {i j} → Coprime i j → Bézout.Identity 1 i j
coprime-Bézout = Bézout.identity ∘ coprime-gcd
coprime-divisor : ∀ {k i j} → Coprime i j → i ∣ j * k → i ∣ k
coprime-divisor {k} c (divides q eq′) with coprime-Bézout c
... | Bézout.+- x y eq = divides (x * k ∸ y * q) (lem₈ x y eq eq′)
... | Bézout.-+ x y eq = divides (y * q ∸ x * k) (lem₉ x y eq eq′)
coprime-factors : ∀ {d m n k} →
Coprime m n → d ∣ m * k × d ∣ n * k → d ∣ k
coprime-factors c (divides q₁ eq₁ , divides q₂ eq₂) with coprime-Bézout c
... | Bézout.+- x y eq = divides (x * q₁ ∸ y * q₂) (lem₁₁ x y eq eq₁ eq₂)
... | Bézout.-+ x y eq = divides (y * q₂ ∸ x * q₁) (lem₁₁ y x eq eq₂ eq₁)
data GCD′ : ℕ → ℕ → ℕ → Set where
gcd-* : ∀ {d} q₁ q₂ (c : Coprime q₁ q₂) →
GCD′ (q₁ * d) (q₂ * d) d
gcd-gcd′ : ∀ {d m n} → GCD m n d → GCD′ m n d
gcd-gcd′ g with GCD.commonDivisor g
gcd-gcd′ {zero} g | (divides q₁ refl , divides q₂ refl)
with q₁ * 0 | *-comm 0 q₁ | q₂ * 0 | *-comm 0 q₂
... | .0 | refl | .0 | refl = gcd-* 1 1 (1-coprimeTo 1)
gcd-gcd′ {suc d} g | (divides q₁ refl , divides q₂ refl) =
gcd-* q₁ q₂ (Bézout-coprime (Bézout.identity g))
gcd′-gcd : ∀ {m n d} → GCD′ m n d → GCD m n d
gcd′-gcd (gcd-* q₁ q₂ c) = GCD.is (n∣m*n q₁ , n∣m*n q₂) (coprime-factors c)
gcd′ : ∀ m n → ∃ λ d → GCD′ m n d
gcd′ m n = Prod.map id gcd-gcd′ (gcd m n)
prime⇒coprime : ∀ m → Prime m →
∀ n → 0 < n → n < m → Coprime m n
prime⇒coprime 0 () _ _ _ _
prime⇒coprime 1 () _ _ _ _
prime⇒coprime (suc (suc m)) _ 0 () _ _
prime⇒coprime (suc (suc m)) _ _ _ _ {1} _ = refl
prime⇒coprime (suc (suc m)) p _ _ _ {0} (divides q 2+m≡q*0 , _) =
⊥-elim $ i+1+j≢i 0 (begin
2 + m ≡⟨ 2+m≡q*0 ⟩
q * 0 ≡⟨ *-zeroʳ q ⟩
0 ∎)
where open ≡-Reasoning
prime⇒coprime (suc (suc m)) p (suc n) _ 1+n<2+m {suc (suc i)}
(2+i∣2+m , 2+i∣1+n) =
⊥-elim (p _ 2+i′∣2+m)
where
i<m : i < m
i<m = +-cancelˡ-< 2 (begin-strict
2 + i ≤⟨ ∣⇒≤ 2+i∣1+n ⟩
1 + n <⟨ 1+n<2+m ⟩
2 + m ∎)
where open ≤-Reasoning
2+i′∣2+m : 2 + toℕ (fromℕ≤ i<m) ∣ 2 + m
2+i′∣2+m = subst (_∣ 2 + m)
(P.sym (cong (2 +_) (toℕ-fromℕ≤ i<m)))
2+i∣2+m