{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Indexed.Homogeneous.Core where
open import Level using (Level; _⊔_)
open import Data.Product using (_×_)
open import Relation.Binary as B using (REL; Rel)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl)
import Relation.Binary.Indexed.Heterogeneous as I
open import Relation.Unary.Indexed using (IPred)
IREL : ∀ {i a b} {I : Set i} → (I → Set a) → (I → Set b) → (ℓ : Level) → Set _
IREL A B ℓ = ∀ {i} → REL (A i) (B i) ℓ
IRel : ∀ {i a} {I : Set i} → (I → Set a) → (ℓ : Level) → Set _
IRel A = IREL A A
module _ {i a} {I : Set i} (A : I → Set a) where
syntax Implies A _∼₁_ _∼₂_ = _∼₁_ ⇒[ A ] _∼₂_
Implies : ∀ {ℓ₁ ℓ₂} → IRel A ℓ₁ → IRel A ℓ₂ → Set _
Implies _∼₁_ _∼₂_ = ∀ {i} → _∼₁_ B.⇒ (_∼₂_ {i})
Reflexive : ∀ {ℓ} → IRel A ℓ → Set _
Reflexive _∼_ = ∀ {i} → B.Reflexive (_∼_ {i})
Symmetric : ∀ {ℓ} → IRel A ℓ → Set _
Symmetric _∼_ = ∀ {i} → B.Symmetric (_∼_ {i})
Transitive : ∀ {ℓ} → IRel A ℓ → Set _
Transitive _∼_ = ∀ {i} → B.Transitive (_∼_ {i})
Antisymmetric : ∀ {ℓ₁ ℓ₂} → IRel A ℓ₁ → IRel A ℓ₂ → Set _
Antisymmetric _≈_ _∼_ = ∀ {i} → B.Antisymmetric _≈_ (_∼_ {i})
Decidable : ∀ {ℓ} → IRel A ℓ → Set _
Decidable _∼_ = ∀ {i} → B.Decidable (_∼_ {i})
Respects : ∀ {ℓ₁ ℓ₂} → IPred A ℓ₁ → IRel A ℓ₂ → Set _
Respects P _∼_ = ∀ {i} {x y : A i} → x ∼ y → P x → P y
Respectsˡ : ∀ {ℓ₁ ℓ₂} → IRel A ℓ₁ → IRel A ℓ₂ → Set _
Respectsˡ P _∼_ = ∀ {i} {x y z : A i} → x ∼ y → P x z → P y z
Respectsʳ : ∀ {ℓ₁ ℓ₂} → IRel A ℓ₁ → IRel A ℓ₂ → Set _
Respectsʳ P _∼_ = ∀ {i} {x y z : A i} → x ∼ y → P z x → P z y
Respects₂ : ∀ {ℓ₁ ℓ₂} → IRel A ℓ₁ → IRel A ℓ₂ → Set _
Respects₂ P _∼_ = (Respectsʳ P _∼_) × (Respectsˡ P _∼_)
module _ {i a b} {I : Set i} {A : I → Set a} {B : I → Set b} where
OverPath : ∀ {ℓ} → IREL A B ℓ → ∀ {i j} → i ≡ j → REL (A i) (B j) ℓ
OverPath _∼_ refl = _∼_
toHetIndexed : ∀ {ℓ} → IREL A B ℓ → I.IREL A B (i ⊔ ℓ)
toHetIndexed _∼_ {i} {j} x y = (p : i ≡ j) → OverPath _∼_ p x y
fromHetIndexed : ∀ {ℓ} → I.IREL A B ℓ → IREL A B ℓ
fromHetIndexed _∼_ = _∼_
module _ {i a} {I : Set i} (A : I → Set a) where
Lift : ∀ {ℓ} → IRel A ℓ → Rel (∀ i → A i) _
Lift _∼_ x y = ∀ i → x i ∼ y i