{-# OPTIONS --without-K --safe #-}
open import Level
module Algebra.Module.Construct.Zero {c ℓ : Level} where
open import Algebra.Bundles
open import Algebra.Module.Bundles
open import Data.Unit.Polymorphic
private
variable
r s ℓr ℓs : Level
leftSemimodule : {R : Semiring r ℓr} → LeftSemimodule R c ℓ
leftSemimodule = record
{ Carrierᴹ = ⊤
; _≈ᴹ_ = λ _ _ → ⊤
}
rightSemimodule : {S : Semiring s ℓs} → RightSemimodule S c ℓ
rightSemimodule = record
{ Carrierᴹ = ⊤
; _≈ᴹ_ = λ _ _ → ⊤
}
bisemimodule :
{R : Semiring r ℓr} {S : Semiring s ℓs} → Bisemimodule R S c ℓ
bisemimodule = record
{ Carrierᴹ = ⊤
; _≈ᴹ_ = λ _ _ → ⊤
}
semimodule : {R : CommutativeSemiring r ℓr} → Semimodule R c ℓ
semimodule = record
{ Carrierᴹ = ⊤
; _≈ᴹ_ = λ _ _ → ⊤
}
leftModule : {R : Ring r ℓr} → LeftModule R c ℓ
leftModule = record
{ Carrierᴹ = ⊤
; _≈ᴹ_ = λ _ _ → ⊤
}
rightModule : {S : Ring s ℓs} → RightModule S c ℓ
rightModule = record
{ Carrierᴹ = ⊤
; _≈ᴹ_ = λ _ _ → ⊤
}
bimodule : {R : Ring r ℓr} {S : Ring s ℓs} → Bimodule R S c ℓ
bimodule = record
{ Carrierᴹ = ⊤
; _≈ᴹ_ = λ _ _ → ⊤
}
⟨module⟩ : {R : CommutativeRing r ℓr} → Module R c ℓ
⟨module⟩ = record
{ Carrierᴹ = ⊤
; _≈ᴹ_ = λ _ _ → ⊤
}