open import Level using (Level)

module Base (l : Level) where

open import Level.Bounded

import Data.Nat as Nat
open import Data.Nat.Properties
open import Data.Char.Base as Char using (Char)
import Data.Empty as Empty
open import Data.Product as Product using (_,_; proj₁)

open import Data.List.Base as List using ([]; _∷_)
open import Data.List.Categorical as List
open import Data.List.Sized.Interface

open import Data.String as String
open import Data.Vec as Vec using ()
open import Data.Bool
open import Data.Maybe as Maybe using (nothing; just; maybe′)
open import Data.Maybe.Categorical as MaybeCat
open import Data.Sum
open import Function
open import Category.Monad
open import Category.Monad.State
open import Relation.Nullary
open import Relation.Nullary.Decidable

open import Relation.Unary using (IUniversal; _⇒_) public
open import Relation.Binary.PropositionalEquality.Decidable public
open import Induction.Nat.Strong hiding (<-lower ; ≤-lower) public

open import Data.Subset public
open import Data.Singleton public

open import Text.Parser.Types.Core                public
open import Text.Parser.Types                     public
open import Text.Parser.Position                  public
open import Text.Parser.Combinators               public
open import Text.Parser.Combinators.Char          public
open import Text.Parser.Combinators.Numbers       public
open import Text.Parser.Monad                     public
open import Text.Parser.Monad.Result hiding (map) public

open Agdarsec′ public

record Tokenizer (A : Set≤ l) : Set (level (level≤ A)) where
  constructor mkTokenizer
  field tokenize : List.List Char  List.List (theSet A)

  fromText : String  List.List (theSet A)
  fromText = tokenize  String.toList

instance
  tokChar : Tokenizer [ Char ]
  tokChar = mkTokenizer id

record RawMonadRun (M : Set l  Set l) : Set (Level.suc l) where
  field runM :  {A}  M A  List.List A
open RawMonadRun

instance

  Agdarsec′M : RawMonad (Agdarsec {l}  )
  Agdarsec′M  = Agdarsec′.monad

  Agdarsec′M0 : RawMonadZero (Agdarsec {l}  )
  Agdarsec′M0 = Agdarsec′.monadZero

  Agdarsec′M+ : RawMonadPlus (Agdarsec {l}  )
  Agdarsec′M+ = Agdarsec′.monadPlus

  runMaybe : RawMonadRun Maybe.Maybe
  runMaybe = record { runM = maybe′ (_∷ []) [] }

  runList : RawMonadRun List.List
  runList = record { runM = id }

  runResult : {E : Set l}  RawMonadRun (Result E)
  runResult = record { runM = result (const []) (const []) (_∷ []) }

  runStateT :  {M A} {{𝕄 : RawMonadRun M}}  RawMonadRun (StateT (Lift ([ Position ] × List A)) M)
  runStateT {{𝕄}} .RawMonadRun.runM =
    List.map proj₁
    ∘′ runM 𝕄
    ∘′ (_$ lift (start , []))

  monadMaybe : RawMonad {l} Maybe.Maybe
  monadMaybe = MaybeCat.monad

  plusMaybe : RawMonadPlus {l} Maybe.Maybe
  plusMaybe = MaybeCat.monadPlus

  monadList : RawMonad {l} List.List
  monadList = List.monad

  plusList : RawMonadPlus {l} List.List
  plusList = List.monadPlus

module _ {P : Parameters l} (open Parameters P)
         {{t : Tokenizer Tok}}
         {{𝕄 : RawMonadPlus M}}
         {{𝕊 : Sized Tok Toks}}
         {{𝕃 :  {n}  Subset (theSet (Vec Tok n)) (theSet (Toks n))}}
         {{  : RawMonadRun M}} where

 private module 𝕄 = RawMonadPlus 𝕄
 private module 𝕃{n} = Subset (𝕃 {n})

 _∈_ :  {A : Set≤ l}  String  ∀[ Parser P A ]  Set (level (level≤ A))
 s  A =
  let input = Vec.fromList $ Tokenizer.fromText t s
      parse = runParser A (n≤1+n _) (lift $ 𝕃.into input)
      check = λ s  if  Success.size s Nat.≟ 0 
                    then just (Success.value s) else nothing
  in case List.TraversableM.mapM MaybeCat.monad check $ runM  parse of λ where
       (just (a  _))  Singleton (lower a)
       _               Lift