{-# OPTIONS --without-K --safe #-}
open import Algebra
open import Level
module Data.Product.Categorical.Right
(a : Level) {b e} (B : RawMonoid b e) where
open import Data.Product
import Data.Product.Categorical.Right.Base as Base
open import Category.Applicative using (RawApplicative)
open import Category.Monad using (RawMonad; RawMonadT)
open import Function.Base using (id; flip; _∘_; _∘′_)
import Function.Identity.Categorical as Id
open RawMonoid B
open Base Carrier a public
applicative : RawApplicative Productᵣ
applicative = record
{ pure = _, ε
; _⊛_ = zip id _∙_
}
monadT : RawMonadT (_∘′ Productᵣ)
monadT M = record
{ return = pure ∘′ (_, ε)
; _>>=_ = λ ma f → ma >>= uncurry λ x b → map₂ (b ∙_) <$> f x
} where open RawMonad M
monad : RawMonad Productᵣ
monad = monadT Id.monad
module TraversableA {F} (App : RawApplicative {a ⊔ b} F) where
open RawApplicative App
sequenceA : ∀ {A} → Productᵣ (F A) → F (Productᵣ A)
sequenceA (fa , y) = (_, y) <$> fa
mapA : ∀ {A B} → (A → F B) → Productᵣ A → F (Productᵣ B)
mapA f = sequenceA ∘ map₁ f
forA : ∀ {A B} → Productᵣ A → (A → F B) → F (Productᵣ B)
forA = flip mapA
module TraversableM {M} (Mon : RawMonad {a ⊔ b} M) where
open RawMonad Mon
open TraversableA rawIApplicative public
renaming
( sequenceA to sequenceM
; mapA to mapM
; forA to forM
)