------------------------------------------------------------------------ -- The Agda standard library -- -- Homomorphism proofs for constants over polynomials ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Tactic.RingSolver.Core.Polynomial.Parameters module Tactic.RingSolver.Core.Polynomial.Homomorphism.Constants {r₁ r₂ r₃ r₄} (homo : Homomorphism r₁ r₂ r₃ r₄) where open Homomorphism homo open import Data.Vec.Base using (Vec) open import Tactic.RingSolver.Core.Polynomial.Base (Homomorphism.from homo) open import Tactic.RingSolver.Core.Polynomial.Semantics homo κ-hom : ∀ {n} (x : Raw.Carrier) (Ρ : Vec Carrier n) → ⟦ κ x ⟧ Ρ ≈ ⟦ x ⟧ᵣ κ-hom x _ = refl