------------------------------------------------------------------------
-- The Agda standard library
--
-- Solver for monoid equalities
------------------------------------------------------------------------

open import Algebra

module Algebra.Monoid-solver {m₁ m₂} (M : Monoid m₁ m₂) where

open import Data.Fin
import Data.Fin.Properties as Fin
open import Data.List.Base hiding (lookup)
import Data.List.Relation.Equality.DecPropositional as ListEq
open import Data.Maybe as Maybe
  using (Maybe; decToMaybe; From-just; from-just)
open import Data.Nat.Base using ()
open import Data.Product
open import Data.Vec using (Vec; lookup)
open import Function using (_∘_; _$_)
open import Relation.Binary using (Decidable)
import Relation.Binary.EqReasoning
open import Relation.Binary.PropositionalEquality as P using (_≡_)
import Relation.Binary.Reflection
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec

open Monoid M
open Relation.Binary.EqReasoning setoid

------------------------------------------------------------------------
-- Monoid expressions

-- There is one constructor for every operation, plus one for
-- variables; there may be at most n variables.

infixr 5 _⊕_

data Expr (n : ) : Set where
  var : Fin n  Expr n
  id  : Expr n
  _⊕_ : Expr n  Expr n  Expr n

-- An environment contains one value for every variable.

Env :   Set _
Env n = Vec Carrier n

-- The semantics of an expression is a function from an environment to
-- a value.

⟦_⟧ :  {n}  Expr n  Env n  Carrier
 var x    ρ = lookup x ρ
 id       ρ = ε
 e₁  e₂  ρ =  e₁  ρ   e₂  ρ

------------------------------------------------------------------------
-- Normal forms

-- A normal form is a list of variables.

Normal :   Set
Normal n = List (Fin n)

-- The semantics of a normal form.

⟦_⟧⇓ :  {n}  Normal n  Env n  Carrier
 []     ⟧⇓ ρ = ε
 x  nf ⟧⇓ ρ = lookup x ρ   nf ⟧⇓ ρ

-- A normaliser.

normalise :  {n}  Expr n  Normal n
normalise (var x)   = x  []
normalise id        = []
normalise (e₁  e₂) = normalise e₁ ++ normalise e₂

-- The normaliser is homomorphic with respect to _++_/_∙_.

homomorphic :  {n} (nf₁ nf₂ : Normal n) (ρ : Env n) 
               nf₁ ++ nf₂ ⟧⇓ ρ  ( nf₁ ⟧⇓ ρ   nf₂ ⟧⇓ ρ)
homomorphic [] nf₂ ρ = begin
   nf₂ ⟧⇓ ρ      ≈⟨ sym $ proj₁ identity _ 
  ε   nf₂ ⟧⇓ ρ  
homomorphic (x  nf₁) nf₂ ρ = begin
  lookup x ρ   nf₁ ++ nf₂ ⟧⇓ ρ          ≈⟨ ∙-cong refl (homomorphic nf₁ nf₂ ρ) 
  lookup x ρ  ( nf₁ ⟧⇓ ρ   nf₂ ⟧⇓ ρ)  ≈⟨ sym $ assoc _ _ _ 
  lookup x ρ   nf₁ ⟧⇓ ρ   nf₂ ⟧⇓ ρ    

-- The normaliser preserves the semantics of the expression.

normalise-correct :
   {n} (e : Expr n) (ρ : Env n)   normalise e ⟧⇓ ρ   e  ρ
normalise-correct (var x) ρ = begin
  lookup x ρ  ε  ≈⟨ proj₂ identity _ 
  lookup x ρ      
normalise-correct id ρ = begin
  ε  
normalise-correct (e₁  e₂) ρ = begin
   normalise e₁ ++ normalise e₂ ⟧⇓ ρ        ≈⟨ homomorphic (normalise e₁) (normalise e₂) ρ 
   normalise e₁ ⟧⇓ ρ   normalise e₂ ⟧⇓ ρ  ≈⟨ ∙-cong (normalise-correct e₁ ρ) (normalise-correct e₂ ρ) 
   e₁  ρ   e₂  ρ                        

------------------------------------------------------------------------
-- "Tactics"

open module R = Relation.Binary.Reflection
                  setoid var ⟦_⟧ (⟦_⟧⇓  normalise) normalise-correct
  public using (solve; _⊜_)

-- We can decide if two normal forms are /syntactically/ equal.

infix 5 _≟_

_≟_ :  {n}  Decidable {A = Normal n} _≡_
nf₁  nf₂ = Dec.map′ ≋⇒≡ ≡⇒≋ (nf₁ ≋? nf₂)
  where open ListEq Fin._≟_

-- We can also give a sound, but not necessarily complete, procedure
-- for determining if two expressions have the same semantics.

prove′ :  {n} (e₁ e₂ : Expr n)  Maybe (∀ ρ   e₁  ρ   e₂  ρ)
prove′ e₁ e₂ =
  Maybe.map lemma $ decToMaybe (normalise e₁  normalise e₂)
  where
  lemma : normalise e₁  normalise e₂   ρ   e₁  ρ   e₂  ρ
  lemma eq ρ =
    R.prove ρ e₁ e₂ (begin
       normalise e₁ ⟧⇓ ρ  ≡⟨ P.cong  e   e ⟧⇓ ρ) eq 
       normalise e₂ ⟧⇓ ρ  )

-- This procedure can be combined with from-just.

prove :  n (es : Expr n × Expr n) 
        From-just (∀ ρ   proj₁ es  ρ   proj₂ es  ρ)
                  (uncurry prove′ es)
prove _ = from-just  uncurry prove′