open import Algebra
module Algebra.Properties.DistributiveLattice
{dl₁ dl₂} (DL : DistributiveLattice dl₁ dl₂)
where
open DistributiveLattice DL
import Algebra.Properties.Lattice
private
open module L = Algebra.Properties.Lattice lattice public
hiding (replace-equality)
open import Algebra.Structures
open import Algebra.FunctionProperties _≈_
open import Relation.Binary
open import Relation.Binary.EqReasoning setoid
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (_⇔_; module Equivalence)
open import Data.Product
∨-∧-distribˡ : _∨_ DistributesOverˡ _∧_
∨-∧-distribˡ x y z = begin
x ∨ y ∧ z ≈⟨ ∨-comm _ _ ⟩
y ∧ z ∨ x ≈⟨ ∨-∧-distribʳ _ _ _ ⟩
(y ∨ x) ∧ (z ∨ x) ≈⟨ ∨-comm _ _ ⟨ ∧-cong ⟩ ∨-comm _ _ ⟩
(x ∨ y) ∧ (x ∨ z) ∎
∨-∧-distrib : _∨_ DistributesOver _∧_
∨-∧-distrib = ∨-∧-distribˡ , ∨-∧-distribʳ
∧-∨-distribˡ : _∧_ DistributesOverˡ _∨_
∧-∨-distribˡ x y z = begin
x ∧ (y ∨ z) ≈⟨ sym (proj₂ absorptive _ _) ⟨ ∧-cong ⟩ refl ⟩
(x ∧ (x ∨ y)) ∧ (y ∨ z) ≈⟨ (refl ⟨ ∧-cong ⟩ ∨-comm _ _) ⟨ ∧-cong ⟩ refl ⟩
(x ∧ (y ∨ x)) ∧ (y ∨ z) ≈⟨ ∧-assoc _ _ _ ⟩
x ∧ ((y ∨ x) ∧ (y ∨ z)) ≈⟨ refl ⟨ ∧-cong ⟩ sym (proj₁ ∨-∧-distrib _ _ _) ⟩
x ∧ (y ∨ x ∧ z) ≈⟨ sym (proj₁ absorptive _ _) ⟨ ∧-cong ⟩ refl ⟩
(x ∨ x ∧ z) ∧ (y ∨ x ∧ z) ≈⟨ sym $ proj₂ ∨-∧-distrib _ _ _ ⟩
x ∧ y ∨ x ∧ z ∎
∧-∨-distribʳ : _∧_ DistributesOverʳ _∨_
∧-∨-distribʳ x y z = begin
(y ∨ z) ∧ x ≈⟨ ∧-comm _ _ ⟩
x ∧ (y ∨ z) ≈⟨ ∧-∨-distribˡ _ _ _ ⟩
x ∧ y ∨ x ∧ z ≈⟨ ∧-comm _ _ ⟨ ∨-cong ⟩ ∧-comm _ _ ⟩
y ∧ x ∨ z ∧ x ∎
∧-∨-distrib : _∧_ DistributesOver _∨_
∧-∨-distrib = ∧-∨-distribˡ , ∧-∨-distribʳ
∧-∨-isDistributiveLattice : IsDistributiveLattice _≈_ _∧_ _∨_
∧-∨-isDistributiveLattice = record
{ isLattice = ∧-∨-isLattice
; ∨-∧-distribʳ = proj₂ ∧-∨-distrib
}
∧-∨-distributiveLattice : DistributiveLattice _ _
∧-∨-distributiveLattice = record
{ _∧_ = _∨_
; _∨_ = _∧_
; isDistributiveLattice = ∧-∨-isDistributiveLattice
}
replace-equality :
{_≈′_ : Rel Carrier dl₂} →
(∀ {x y} → x ≈ y ⇔ (x ≈′ y)) → DistributiveLattice _ _
replace-equality {_≈′_} ≈⇔≈′ = record
{ _≈_ = _≈′_
; _∧_ = _∧_
; _∨_ = _∨_
; isDistributiveLattice = record
{ isLattice = Lattice.isLattice (L.replace-equality ≈⇔≈′)
; ∨-∧-distribʳ = λ x y z → to ⟨$⟩ ∨-∧-distribʳ x y z
}
} where open module E {x y} = Equivalence (≈⇔≈′ {x} {y})