{-# OPTIONS --without-K --safe #-}
module Data.Fin.Properties where
open import Algebra.FunctionProperties using (Involutive)
open import Category.Applicative using (RawApplicative)
open import Category.Functor using (RawFunctor)
open import Data.Empty using (⊥-elim)
open import Data.Fin.Base
open import Data.Nat as ℕ using (ℕ; zero; suc; s≤s; z≤n; _∸_)
renaming
( _≤_ to _ℕ≤_
; _<_ to _ℕ<_
; _+_ to _ℕ+_
)
import Data.Nat.Properties as ℕₚ
open import Data.Unit using (tt)
open import Data.Product using (∃; ∃₂; ∄; _×_; _,_; map; proj₁)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function.Core using (_∘_; id)
open import Function.Injection using (_↣_)
open import Relation.Binary as B hiding (Decidable)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; sym; trans; cong; subst; module ≡-Reasoning)
open import Relation.Nullary using (¬_)
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Unary as U using (U; Pred; Decidable; _⊆_)
open import Relation.Unary.Properties using (U?)
¬Fin0 : ¬ Fin 0
¬Fin0 ()
suc-injective : ∀ {o} {m n : Fin o} → Fin.suc m ≡ suc n → m ≡ n
suc-injective refl = refl
infix 4 _≟_
_≟_ : ∀ {n} → B.Decidable {A = Fin n} _≡_
zero ≟ zero = yes refl
zero ≟ suc y = no λ()
suc x ≟ zero = no λ()
suc x ≟ suc y with x ≟ y
... | yes x≡y = yes (cong suc x≡y)
... | no x≢y = no (x≢y ∘ suc-injective)
preorder : ℕ → Preorder _ _ _
preorder n = P.preorder (Fin n)
setoid : ℕ → Setoid _ _
setoid n = P.setoid (Fin n)
isDecEquivalence : ∀ {n} → IsDecEquivalence (_≡_ {A = Fin n})
isDecEquivalence = record
{ isEquivalence = P.isEquivalence
; _≟_ = _≟_
}
decSetoid : ℕ → DecSetoid _ _
decSetoid n = record
{ Carrier = Fin n
; _≈_ = _≡_
; isDecEquivalence = isDecEquivalence
}
toℕ-injective : ∀ {n} {i j : Fin n} → toℕ i ≡ toℕ j → i ≡ j
toℕ-injective {zero} {} {} _
toℕ-injective {suc n} {zero} {zero} eq = refl
toℕ-injective {suc n} {suc i} {suc j} eq =
cong suc (toℕ-injective (cong ℕ.pred eq))
toℕ-strengthen : ∀ {n} (i : Fin n) → toℕ (strengthen i) ≡ toℕ i
toℕ-strengthen zero = refl
toℕ-strengthen (suc i) = cong suc (toℕ-strengthen i)
toℕ-raise : ∀ {m} n (i : Fin m) → toℕ (raise n i) ≡ n ℕ+ toℕ i
toℕ-raise zero i = refl
toℕ-raise (suc n) i = cong suc (toℕ-raise n i)
toℕ<n : ∀ {n} (i : Fin n) → toℕ i ℕ< n
toℕ<n zero = s≤s z≤n
toℕ<n (suc i) = s≤s (toℕ<n i)
toℕ≤pred[n] : ∀ {n} (i : Fin n) → toℕ i ℕ≤ ℕ.pred n
toℕ≤pred[n] zero = z≤n
toℕ≤pred[n] (suc {n = suc n} i) = s≤s (toℕ≤pred[n] i)
toℕ≤pred[n]′ : ∀ {n} (i : Fin n) → toℕ i ℕ≤ ℕ.pred n
toℕ≤pred[n]′ i = ℕₚ.<⇒≤pred (toℕ<n i)
toℕ-fromℕ : ∀ n → toℕ (fromℕ n) ≡ n
toℕ-fromℕ zero = refl
toℕ-fromℕ (suc n) = cong suc (toℕ-fromℕ n)
fromℕ-toℕ : ∀ {n} (i : Fin n) → fromℕ (toℕ i) ≡ strengthen i
fromℕ-toℕ zero = refl
fromℕ-toℕ (suc i) = cong suc (fromℕ-toℕ i)
fromℕ≤-toℕ : ∀ {m} (i : Fin m) (i<m : toℕ i ℕ< m) → fromℕ≤ i<m ≡ i
fromℕ≤-toℕ zero (s≤s z≤n) = refl
fromℕ≤-toℕ (suc i) (s≤s (s≤s m≤n)) = cong suc (fromℕ≤-toℕ i (s≤s m≤n))
toℕ-fromℕ≤ : ∀ {m n} (m<n : m ℕ< n) → toℕ (fromℕ≤ m<n) ≡ m
toℕ-fromℕ≤ (s≤s z≤n) = refl
toℕ-fromℕ≤ (s≤s (s≤s m<n)) = cong suc (toℕ-fromℕ≤ (s≤s m<n))
fromℕ-def : ∀ n → fromℕ n ≡ fromℕ≤ ℕₚ.≤-refl
fromℕ-def zero = refl
fromℕ-def (suc n) = cong suc (fromℕ-def n)
fromℕ≤≡fromℕ≤″ : ∀ {m n} (m<n : m ℕ< n) (m<″n : m ℕ.<″ n) →
fromℕ≤ m<n ≡ fromℕ≤″ m m<″n
fromℕ≤≡fromℕ≤″ (s≤s z≤n) (ℕ.less-than-or-equal refl) = refl
fromℕ≤≡fromℕ≤″ (s≤s (s≤s m<n)) (ℕ.less-than-or-equal refl) =
cong suc (fromℕ≤≡fromℕ≤″ (s≤s m<n) (ℕ.less-than-or-equal refl))
toℕ-fromℕ≤″ : ∀ {m n} (m<n : m ℕ.<″ n) → toℕ (fromℕ≤″ m m<n) ≡ m
toℕ-fromℕ≤″ {m} {n} m<n = begin
toℕ (fromℕ≤″ m m<n) ≡⟨ cong toℕ (sym (fromℕ≤≡fromℕ≤″ (ℕₚ.≤″⇒≤ m<n) m<n)) ⟩
toℕ (fromℕ≤ _) ≡⟨ toℕ-fromℕ≤ (ℕₚ.≤″⇒≤ m<n) ⟩
m ∎
where open ≡-Reasoning
toℕ-cast : ∀ {m n} .(eq : m ≡ n) (k : Fin m) → toℕ (cast eq k) ≡ toℕ k
toℕ-cast {n = suc n} eq zero = refl
toℕ-cast {n = suc n} eq (suc k) = cong suc (toℕ-cast (cong ℕ.pred eq) k)
≤-reflexive : ∀ {n} → _≡_ ⇒ (_≤_ {n})
≤-reflexive refl = ℕₚ.≤-refl
≤-refl : ∀ {n} → Reflexive (_≤_ {n})
≤-refl = ≤-reflexive refl
≤-trans : ∀ {n} → Transitive (_≤_ {n})
≤-trans = ℕₚ.≤-trans
≤-antisym : ∀ {n} → Antisymmetric _≡_ (_≤_ {n})
≤-antisym x≤y y≤x = toℕ-injective (ℕₚ.≤-antisym x≤y y≤x)
≤-total : ∀ {n} → Total (_≤_ {n})
≤-total x y = ℕₚ.≤-total (toℕ x) (toℕ y)
infix 4 _≤?_ _<?_
_≤?_ : ∀ {n} → B.Decidable (_≤_ {n})
a ≤? b = toℕ a ℕ.≤? toℕ b
_<?_ : ∀ {n} → B.Decidable (_<_ {n})
m <? n = suc (toℕ m) ℕ.≤? toℕ n
≤-isPreorder : ∀ {n} → IsPreorder _≡_ (_≤_ {n})
≤-isPreorder = record
{ isEquivalence = P.isEquivalence
; reflexive = ≤-reflexive
; trans = ≤-trans
}
≤-preorder : ℕ → Preorder _ _ _
≤-preorder n = record
{ isPreorder = ≤-isPreorder {n}
}
≤-isPartialOrder : ∀ {n} → IsPartialOrder _≡_ (_≤_ {n})
≤-isPartialOrder = record
{ isPreorder = ≤-isPreorder
; antisym = ≤-antisym
}
≤-poset : ℕ → Poset _ _ _
≤-poset n = record
{ isPartialOrder = ≤-isPartialOrder {n}
}
≤-isTotalOrder : ∀ {n} → IsTotalOrder _≡_ (_≤_ {n})
≤-isTotalOrder = record
{ isPartialOrder = ≤-isPartialOrder
; total = ≤-total
}
≤-totalOrder : ℕ → TotalOrder _ _ _
≤-totalOrder n = record
{ isTotalOrder = ≤-isTotalOrder {n}
}
≤-isDecTotalOrder : ∀ {n} → IsDecTotalOrder _≡_ (_≤_ {n})
≤-isDecTotalOrder = record
{ isTotalOrder = ≤-isTotalOrder
; _≟_ = _≟_
; _≤?_ = _≤?_
}
≤-decTotalOrder : ℕ → DecTotalOrder _ _ _
≤-decTotalOrder n = record
{ isDecTotalOrder = ≤-isDecTotalOrder {n}
}
≤-irrelevant : ∀ {n} → Irrelevant (_≤_ {n})
≤-irrelevant = ℕₚ.≤-irrelevant
<-irrefl : ∀ {n} → Irreflexive _≡_ (_<_ {n})
<-irrefl refl = ℕₚ.<-irrefl refl
<-asym : ∀ {n} → Asymmetric (_<_ {n})
<-asym = ℕₚ.<-asym
<-trans : ∀ {n} → Transitive (_<_ {n})
<-trans = ℕₚ.<-trans
<-cmp : ∀ {n} → Trichotomous _≡_ (_<_ {n})
<-cmp zero zero = tri≈ (λ()) refl (λ())
<-cmp zero (suc j) = tri< (s≤s z≤n) (λ()) (λ())
<-cmp (suc i) zero = tri> (λ()) (λ()) (s≤s z≤n)
<-cmp (suc i) (suc j) with <-cmp i j
... | tri< i<j i≢j j≮i = tri< (s≤s i<j) (i≢j ∘ suc-injective) (j≮i ∘ ℕₚ.≤-pred)
... | tri> i≮j i≢j j<i = tri> (i≮j ∘ ℕₚ.≤-pred) (i≢j ∘ suc-injective) (s≤s j<i)
... | tri≈ i≮j i≡j j≮i = tri≈ (i≮j ∘ ℕₚ.≤-pred) (cong suc i≡j) (j≮i ∘ ℕₚ.≤-pred)
<-respˡ-≡ : ∀ {n} → (_<_ {n}) Respectsˡ _≡_
<-respˡ-≡ refl x≤y = x≤y
<-respʳ-≡ : ∀ {n} → (_<_ {n}) Respectsʳ _≡_
<-respʳ-≡ refl x≤y = x≤y
<-resp₂-≡ : ∀ {n} → (_<_ {n}) Respects₂ _≡_
<-resp₂-≡ = <-respʳ-≡ , <-respˡ-≡
<-isStrictPartialOrder : ∀ {n} → IsStrictPartialOrder _≡_ (_<_ {n})
<-isStrictPartialOrder = record
{ isEquivalence = P.isEquivalence
; irrefl = <-irrefl
; trans = <-trans
; <-resp-≈ = <-resp₂-≡
}
<-strictPartialOrder : ℕ → StrictPartialOrder _ _ _
<-strictPartialOrder n = record
{ isStrictPartialOrder = <-isStrictPartialOrder {n}
}
<-isStrictTotalOrder : ∀ {n} → IsStrictTotalOrder _≡_ (_<_ {n})
<-isStrictTotalOrder = record
{ isEquivalence = P.isEquivalence
; trans = <-trans
; compare = <-cmp
}
<-strictTotalOrder : ℕ → StrictTotalOrder _ _ _
<-strictTotalOrder n = record
{ isStrictTotalOrder = <-isStrictTotalOrder {n}
}
<-irrelevant : ∀ {n} → Irrelevant (_<_ {n})
<-irrelevant = ℕₚ.<-irrelevant
<⇒≢ : ∀ {n} {i j : Fin n} → i < j → i ≢ j
<⇒≢ i<i refl = ℕₚ.n≮n _ i<i
≤∧≢⇒< : ∀ {n} {i j : Fin n} → i ≤ j → i ≢ j → i < j
≤∧≢⇒< {i = zero} {zero} _ 0≢0 = contradiction refl 0≢0
≤∧≢⇒< {i = zero} {suc j} _ _ = s≤s z≤n
≤∧≢⇒< {i = suc i} {suc j} (s≤s i≤j) 1+i≢1+j =
s≤s (≤∧≢⇒< i≤j (1+i≢1+j ∘ (cong suc)))
toℕ-inject : ∀ {n} {i : Fin n} (j : Fin′ i) →
toℕ (inject j) ≡ toℕ j
toℕ-inject {i = suc i} zero = refl
toℕ-inject {i = suc i} (suc j) = cong suc (toℕ-inject j)
toℕ-inject+ : ∀ {m} n (i : Fin m) → toℕ i ≡ toℕ (inject+ n i)
toℕ-inject+ n zero = refl
toℕ-inject+ n (suc i) = cong suc (toℕ-inject+ n i)
inject₁-injective : ∀ {n} {i j : Fin n} → inject₁ i ≡ inject₁ j → i ≡ j
inject₁-injective {i = zero} {zero} i≡j = refl
inject₁-injective {i = suc i} {suc j} i≡j =
cong suc (inject₁-injective (suc-injective i≡j))
toℕ-inject₁ : ∀ {n} (i : Fin n) → toℕ (inject₁ i) ≡ toℕ i
toℕ-inject₁ zero = refl
toℕ-inject₁ (suc i) = cong suc (toℕ-inject₁ i)
toℕ-inject₁-≢ : ∀ {n}(i : Fin n) → n ≢ toℕ (inject₁ i)
toℕ-inject₁-≢ (suc i) = toℕ-inject₁-≢ i ∘ ℕₚ.suc-injective
inject₁-lower₁ : ∀ {n} (i : Fin (suc n)) (n≢i : n ≢ toℕ i) →
inject₁ (lower₁ i n≢i) ≡ i
inject₁-lower₁ {zero} zero 0≢0 = contradiction refl 0≢0
inject₁-lower₁ {suc n} zero _ = refl
inject₁-lower₁ {suc n} (suc i) n+1≢i+1 =
cong suc (inject₁-lower₁ i (n+1≢i+1 ∘ cong suc))
lower₁-inject₁′ : ∀ {n} (i : Fin n) (n≢i : n ≢ toℕ (inject₁ i)) →
lower₁ (inject₁ i) n≢i ≡ i
lower₁-inject₁′ zero _ = refl
lower₁-inject₁′ (suc i) n+1≢i+1 =
cong suc (lower₁-inject₁′ i (n+1≢i+1 ∘ cong suc))
lower₁-inject₁ : ∀ {n} (i : Fin n) →
lower₁ (inject₁ i) (toℕ-inject₁-≢ i) ≡ i
lower₁-inject₁ i = lower₁-inject₁′ i (toℕ-inject₁-≢ i)
lower₁-irrelevant : ∀ {n} (i : Fin (suc n)) n≢i₁ n≢i₂ →
lower₁ {n} i n≢i₁ ≡ lower₁ {n} i n≢i₂
lower₁-irrelevant {zero} zero 0≢0 _ = contradiction refl 0≢0
lower₁-irrelevant {suc n} zero _ _ = refl
lower₁-irrelevant {suc n} (suc i) _ _ =
cong suc (lower₁-irrelevant i _ _)
toℕ-inject≤ : ∀ {m n} (i : Fin m) .(le : m ℕ≤ n) →
toℕ (inject≤ i le) ≡ toℕ i
toℕ-inject≤ {_} {suc n} zero _ = refl
toℕ-inject≤ {_} {suc n} (suc i) le = cong suc (toℕ-inject≤ i (ℕ.≤-pred le))
inject≤-refl : ∀ {n} (i : Fin n) .(n≤n : n ℕ≤ n) → inject≤ i n≤n ≡ i
inject≤-refl {suc n} zero _ = refl
inject≤-refl {suc n} (suc i) n≤n = cong suc (inject≤-refl i (ℕ.≤-pred n≤n))
inject≤-idempotent : ∀ {m n k} (i : Fin m)
.(m≤n : m ℕ≤ n) .(n≤k : n ℕ≤ k) .(m≤k : m ℕ≤ k) →
inject≤ (inject≤ i m≤n) n≤k ≡ inject≤ i m≤k
inject≤-idempotent {_} {suc n} {suc k} zero _ _ _ = refl
inject≤-idempotent {_} {suc n} {suc k} (suc i) _ _ _ =
cong suc (inject≤-idempotent i _ _ _)
splitAt-inject+ : ∀ m n i → splitAt m (inject+ n i) ≡ inj₁ i
splitAt-inject+ (suc m) n zero = refl
splitAt-inject+ (suc m) n (suc i) rewrite splitAt-inject+ m n i = refl
splitAt-raise : ∀ m n i → splitAt m (raise {n} m i) ≡ inj₂ i
splitAt-raise zero n i = refl
splitAt-raise (suc m) n i rewrite splitAt-raise m n i = refl
≺⇒<′ : _≺_ ⇒ ℕ._<′_
≺⇒<′ (n ≻toℕ i) = ℕₚ.≤⇒≤′ (toℕ<n i)
<′⇒≺ : ℕ._<′_ ⇒ _≺_
<′⇒≺ {n} ℕ.≤′-refl = subst (_≺ suc n) (toℕ-fromℕ n)
(suc n ≻toℕ fromℕ n)
<′⇒≺ (ℕ.≤′-step m≤′n) with <′⇒≺ m≤′n
... | n ≻toℕ i = subst (_≺ suc n) (toℕ-inject₁ i) (suc n ≻toℕ _)
<⇒≤pred : ∀ {n} {i j : Fin n} → j < i → j ≤ pred i
<⇒≤pred {i = suc i} {zero} j<i = z≤n
<⇒≤pred {i = suc i} {suc j} (s≤s j<i) =
subst (_ ℕ≤_) (sym (toℕ-inject₁ i)) j<i
toℕ‿ℕ- : ∀ n i → toℕ (n ℕ- i) ≡ n ∸ toℕ i
toℕ‿ℕ- n zero = toℕ-fromℕ n
toℕ‿ℕ- (suc n) (suc i) = toℕ‿ℕ- n i
nℕ-ℕi≤n : ∀ n i → n ℕ-ℕ i ℕ≤ n
nℕ-ℕi≤n n zero = ℕₚ.≤-refl
nℕ-ℕi≤n (suc n) (suc i) = begin
n ℕ-ℕ i ≤⟨ nℕ-ℕi≤n n i ⟩
n ≤⟨ ℕₚ.n≤1+n n ⟩
suc n ∎
where open ℕₚ.≤-Reasoning
punchIn-injective : ∀ {m} i (j k : Fin m) →
punchIn i j ≡ punchIn i k → j ≡ k
punchIn-injective zero _ _ refl = refl
punchIn-injective (suc i) zero zero _ = refl
punchIn-injective (suc i) (suc j) (suc k) ↑j+1≡↑k+1 =
cong suc (punchIn-injective i j k (suc-injective ↑j+1≡↑k+1))
punchInᵢ≢i : ∀ {m} i (j : Fin m) → punchIn i j ≢ i
punchInᵢ≢i (suc i) (suc j) = punchInᵢ≢i i j ∘ suc-injective
punchOut-cong : ∀ {n} (i : Fin (suc n)) {j k} {i≢j : i ≢ j} {i≢k : i ≢ k} → j ≡ k → punchOut i≢j ≡ punchOut i≢k
punchOut-cong zero {zero} {i≢j = 0≢0} = contradiction refl 0≢0
punchOut-cong zero {suc j} {zero} {i≢k = 0≢0} = contradiction refl 0≢0
punchOut-cong zero {suc j} {suc k} = suc-injective
punchOut-cong {suc n} (suc i) {zero} {zero} _ = refl
punchOut-cong {suc n} (suc i) {suc j} {suc k} = cong suc ∘ punchOut-cong i ∘ suc-injective
punchOut-cong′ : ∀ {n} (i : Fin (suc n)) {j k} {p : i ≢ j} (q : j ≡ k) → punchOut p ≡ punchOut (p ∘ sym ∘ trans q ∘ sym)
punchOut-cong′ i q = punchOut-cong i q
punchOut-injective : ∀ {m} {i j k : Fin (suc m)}
(i≢j : i ≢ j) (i≢k : i ≢ k) →
punchOut i≢j ≡ punchOut i≢k → j ≡ k
punchOut-injective {_} {zero} {zero} {_} 0≢0 _ _ = contradiction refl 0≢0
punchOut-injective {_} {zero} {_} {zero} _ 0≢0 _ = contradiction refl 0≢0
punchOut-injective {_} {zero} {suc j} {suc k} _ _ pⱼ≡pₖ = cong suc pⱼ≡pₖ
punchOut-injective {suc n} {suc i} {zero} {zero} _ _ _ = refl
punchOut-injective {suc n} {suc i} {suc j} {suc k} i≢j i≢k pⱼ≡pₖ =
cong suc (punchOut-injective (i≢j ∘ cong suc) (i≢k ∘ cong suc) (suc-injective pⱼ≡pₖ))
punchIn-punchOut : ∀ {m} {i j : Fin (suc m)} (i≢j : i ≢ j) →
punchIn i (punchOut i≢j) ≡ j
punchIn-punchOut {_} {zero} {zero} 0≢0 = contradiction refl 0≢0
punchIn-punchOut {_} {zero} {suc j} _ = refl
punchIn-punchOut {suc m} {suc i} {zero} i≢j = refl
punchIn-punchOut {suc m} {suc i} {suc j} i≢j =
cong suc (punchIn-punchOut (i≢j ∘ cong suc))
punchOut-punchIn : ∀ {n} i {j : Fin n} → punchOut {i = i} {j = punchIn i j} (punchInᵢ≢i i j ∘ sym) ≡ j
punchOut-punchIn zero {j} = refl
punchOut-punchIn (suc i) {zero} = refl
punchOut-punchIn (suc i) {suc j} = cong suc (begin
punchOut (punchInᵢ≢i i j ∘ suc-injective ∘ sym ∘ cong suc) ≡⟨ punchOut-cong i refl ⟩
punchOut (punchInᵢ≢i i j ∘ sym) ≡⟨ punchOut-punchIn i ⟩
j ∎)
where open ≡-Reasoning
∀-cons : ∀ {n p} {P : Pred (Fin (suc n)) p} →
P zero → (∀ i → P (suc i)) → (∀ i → P i)
∀-cons z s zero = z
∀-cons z s (suc i) = s i
decFinSubset : ∀ {n p q} {P : Pred (Fin n) p} {Q : Pred (Fin n) q} →
Decidable Q → (∀ {f} → Q f → Dec (P f)) → Dec (Q ⊆ P)
decFinSubset {zero} {_} {_} _ _ = yes λ{}
decFinSubset {suc n} {P = P} {Q} Q? P? with decFinSubset (Q? ∘ suc) P?
... | no ¬q⟶p = no (λ q⟶p → ¬q⟶p (q⟶p))
... | yes q⟶p with Q? zero
... | no ¬q₀ = yes (∀-cons {P = Q U.⇒ P} (⊥-elim ∘ ¬q₀) (λ _ → q⟶p) _)
... | yes q₀ with P? q₀
... | no ¬p₀ = no (λ q⟶p → ¬p₀ (q⟶p q₀))
... | yes p₀ = yes (∀-cons {P = Q U.⇒ P} (λ _ → p₀) (λ _ → q⟶p) _)
any? : ∀ {n p} {P : Fin n → Set p} → Decidable P → Dec (∃ P)
any? {zero} {_} P? = no λ { (() , _) }
any? {suc n} {P} P? with P? zero | any? (P? ∘ suc)
... | yes P₀ | _ = yes (_ , P₀)
... | no _ | yes (_ , P₁₊ᵢ) = yes (_ , P₁₊ᵢ)
... | no ¬P₀ | no ¬P₁₊ᵢ = no λ
{ (zero , P₀) → ¬P₀ P₀
; (suc f , P₁₊ᵢ) → ¬P₁₊ᵢ (_ , P₁₊ᵢ)
}
all? : ∀ {n p} {P : Pred (Fin n) p} →
Decidable P → Dec (∀ f → P f)
all? P? with decFinSubset U? (λ {f} _ → P? f)
... | yes ∀p = yes (λ f → ∀p tt)
... | no ¬∀p = no (λ ∀p → ¬∀p (λ _ → ∀p _))
¬∀⟶∃¬-smallest : ∀ n {p} (P : Pred (Fin n) p) → Decidable P →
¬ (∀ i → P i) → ∃ λ i → ¬ P i × ((j : Fin′ i) → P (inject j))
¬∀⟶∃¬-smallest zero P P? ¬∀P = contradiction (λ()) ¬∀P
¬∀⟶∃¬-smallest (suc n) P P? ¬∀P with P? zero
... | no ¬P₀ = (zero , ¬P₀ , λ ())
... | yes P₀ = map suc (map id (∀-cons P₀))
(¬∀⟶∃¬-smallest n (P ∘ suc) (P? ∘ suc) (¬∀P ∘ (∀-cons P₀)))
¬∀⟶∃¬ : ∀ n {p} (P : Pred (Fin n) p) → Decidable P →
¬ (∀ i → P i) → (∃ λ i → ¬ P i)
¬∀⟶∃¬ n P P? ¬P = map id proj₁ (¬∀⟶∃¬-smallest n P P? ¬P)
pigeonhole : ∀ {m n} → m ℕ.< n → (f : Fin n → Fin m) →
∃₂ λ i j → i ≢ j × f i ≡ f j
pigeonhole (s≤s z≤n) f = contradiction (f zero) λ()
pigeonhole (s≤s (s≤s m≤n)) f with any? (λ k → f zero ≟ f (suc k))
... | yes (j , f₀≡fⱼ) = zero , suc j , (λ()) , f₀≡fⱼ
... | no f₀≢fₖ with pigeonhole (s≤s m≤n) (λ j → punchOut (f₀≢fₖ ∘ (j ,_ )))
... | (i , j , i≢j , fᵢ≡fⱼ) =
suc i , suc j , i≢j ∘ suc-injective ,
punchOut-injective (f₀≢fₖ ∘ (i ,_)) _ fᵢ≡fⱼ
module _ {f} {F : Set f → Set f} (RA : RawApplicative F) where
open RawApplicative RA
sequence : ∀ {n} {P : Pred (Fin n) f} →
(∀ i → F (P i)) → F (∀ i → P i)
sequence {zero} ∀iPi = pure λ()
sequence {suc n} ∀iPi = ∀-cons <$> ∀iPi zero ⊛ sequence (∀iPi ∘ suc)
module _ {f} {F : Set f → Set f} (RF : RawFunctor F) where
open RawFunctor RF
sequence⁻¹ : ∀ {A : Set f} {P : Pred A f} →
F (∀ i → P i) → (∀ i → F (P i))
sequence⁻¹ F∀iPi i = (λ f → f i) <$> F∀iPi
module _ {a} {A : Set a} where
eq? : ∀ {n} → A ↣ Fin n → B.Decidable {A = A} _≡_
eq? inj = Dec.via-injection inj _≟_
cmp = <-cmp
{-# WARNING_ON_USAGE cmp
"Warning: cmp was deprecated in v0.15.
Please use <-cmp instead."
#-}
strictTotalOrder = <-strictTotalOrder
{-# WARNING_ON_USAGE strictTotalOrder
"Warning: strictTotalOrder was deprecated in v0.15.
Please use <-strictTotalOrder instead."
#-}
to-from = toℕ-fromℕ
{-# WARNING_ON_USAGE to-from
"Warning: to-from was deprecated in v0.16.
Please use toℕ-fromℕ instead."
#-}
from-to = fromℕ-toℕ
{-# WARNING_ON_USAGE from-to
"Warning: from-to was deprecated in v0.16.
Please use fromℕ-toℕ instead."
#-}
bounded = toℕ<n
{-# WARNING_ON_USAGE bounded
"Warning: bounded was deprecated in v0.16.
Please use toℕ<n instead."
#-}
prop-toℕ-≤ = toℕ≤pred[n]
{-# WARNING_ON_USAGE prop-toℕ-≤
"Warning: prop-toℕ-≤ was deprecated in v0.16.
Please use toℕ≤pred[n] instead."
#-}
prop-toℕ-≤′ = toℕ≤pred[n]′
{-# WARNING_ON_USAGE prop-toℕ-≤′
"Warning: prop-toℕ-≤′ was deprecated in v0.16.
Please use toℕ≤pred[n]′ instead."
#-}
inject-lemma = toℕ-inject
{-# WARNING_ON_USAGE inject-lemma
"Warning: inject-lemma was deprecated in v0.16.
Please use toℕ-inject instead."
#-}
inject+-lemma = toℕ-inject+
{-# WARNING_ON_USAGE inject+-lemma
"Warning: inject+-lemma was deprecated in v0.16.
Please use toℕ-inject+ instead."
#-}
inject₁-lemma = toℕ-inject₁
{-# WARNING_ON_USAGE inject₁-lemma
"Warning: inject₁-lemma was deprecated in v0.16.
Please use toℕ-inject₁ instead."
#-}
inject≤-lemma = toℕ-inject≤
{-# WARNING_ON_USAGE inject≤-lemma
"Warning: inject≤-lemma was deprecated in v0.16.
Please use toℕ-inject≤ instead."
#-}
≤+≢⇒< = ≤∧≢⇒<
{-# WARNING_ON_USAGE ≤+≢⇒<
"Warning: ≤+≢⇒< was deprecated in v0.17.
Please use ≤∧≢⇒< instead."
#-}
≤-irrelevance = ≤-irrelevant
{-# WARNING_ON_USAGE ≤-irrelevance
"Warning: ≤-irrelevance was deprecated in v1.0.
Please use ≤-irrelevant instead."
#-}
<-irrelevance = <-irrelevant
{-# WARNING_ON_USAGE <-irrelevance
"Warning: <-irrelevance was deprecated in v1.0.
Please use <-irrelevant instead."
#-}
infixl 6 _+′_
_+′_ : ∀ {m n} (i : Fin m) (j : Fin n) → Fin (ℕ.pred m ℕ+ n)
i +′ j = inject≤ (i + j) (ℕₚ.+-monoˡ-≤ _ (toℕ≤pred[n] i))
{-# WARNING_ON_USAGE _+′_
"Warning: _+′_ was deprecated in v1.1.
Please use `raise` or `inject+` from `Data.Fin` instead."
#-}