{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Reasoning.Base.Double {a ℓ₁ ℓ₂} {A : Set a}
{_≈_ : Rel A ℓ₁} {_∼_ : Rel A ℓ₂} (isPreorder : IsPreorder _≈_ _∼_)
where
open import Data.Product using (proj₁; proj₂)
open import Level using (Level; _⊔_; Lift; lift)
open import Function using (case_of_; id)
open import Relation.Binary.PropositionalEquality.Core
using (_≡_; refl; sym)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Decidable using (True; toWitness)
open IsPreorder isPreorder
infix 4 _IsRelatedTo_
data _IsRelatedTo_ (x y : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
nonstrict : (x∼y : x ∼ y) → x IsRelatedTo y
equals : (x≈y : x ≈ y) → x IsRelatedTo y
levelOf : ∀ {x y} → x IsRelatedTo y → Level
levelOf (nonstrict x∼y) = ℓ₂
levelOf (equals x≈y) = ℓ₁
relOf : ∀ {x y} (r : x IsRelatedTo y) → Rel A (levelOf r)
relOf (nonstrict x∼y) = _∼_
relOf (equals x≈y) = _≈_
data IsEquality {x y} : x IsRelatedTo y → Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
isEquality : ∀ x≈y → IsEquality (equals x≈y)
IsEquality? : ∀ {x y} (x≲y : x IsRelatedTo y) → Dec (IsEquality x≲y)
IsEquality? (nonstrict _) = no λ()
IsEquality? (equals x≈y) = yes (isEquality x≈y)
extractEquality : ∀ {x y} {x≲y : x IsRelatedTo y} → IsEquality x≲y → x ≈ y
extractEquality (isEquality x≈y) = x≈y
infix 1 begin_ begin-equality_
infixr 2 _∼⟨_⟩_ _≈⟨_⟩_ _≈˘⟨_⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_ _≡⟨⟩_
infix 3 _∎
begin_ : ∀ {x y} (r : x IsRelatedTo y) → x ∼ y
begin (nonstrict x∼y) = x∼y
begin (equals x≈y) = reflexive x≈y
begin-equality_ : ∀ {x y} (r : x IsRelatedTo y) → {s : True (IsEquality? r)} → x ≈ y
begin-equality_ r {s} = extractEquality (toWitness s)
_∼⟨_⟩_ : ∀ (x : A) {y z} → x ∼ y → y IsRelatedTo z → x IsRelatedTo z
x ∼⟨ x∼y ⟩ nonstrict y∼z = nonstrict (trans x∼y y∼z)
x ∼⟨ x∼y ⟩ equals y≈z = nonstrict (proj₁ ∼-resp-≈ y≈z x∼y)
_≈⟨_⟩_ : ∀ (x : A) {y z} → x ≈ y → y IsRelatedTo z → x IsRelatedTo z
x ≈⟨ x≈y ⟩ nonstrict y∼z = nonstrict (proj₂ ∼-resp-≈ (Eq.sym x≈y) y∼z)
x ≈⟨ x≈y ⟩ equals y≈z = equals (Eq.trans x≈y y≈z)
_≈˘⟨_⟩_ : ∀ x {y z} → y ≈ x → y IsRelatedTo z → x IsRelatedTo z
x ≈˘⟨ x≈y ⟩ y∼z = x ≈⟨ Eq.sym x≈y ⟩ y∼z
_≡⟨_⟩_ : ∀ (x : A) {y z} → x ≡ y → y IsRelatedTo z → x IsRelatedTo z
x ≡⟨ x≡y ⟩ nonstrict y∼z = nonstrict (case x≡y of λ where refl → y∼z)
x ≡⟨ x≡y ⟩ equals y≈z = equals (case x≡y of λ where refl → y≈z)
_≡˘⟨_⟩_ : ∀ x {y z} → y ≡ x → y IsRelatedTo z → x IsRelatedTo z
x ≡˘⟨ x≡y ⟩ y∼z = x ≡⟨ sym x≡y ⟩ y∼z
_≡⟨⟩_ : ∀ (x : A) {y} → x IsRelatedTo y → x IsRelatedTo y
x ≡⟨⟩ x≲y = x≲y
_∎ : ∀ x → x IsRelatedTo x
x ∎ = equals Eq.refl