{-# OPTIONS --without-K --safe #-}
module Data.Integer.Divisibility where
open import Function
open import Data.Integer
open import Data.Integer.Properties
import Data.Nat as ℕ
import Data.Nat.Properties as ℕᵖ
import Data.Nat.Divisibility as ℕᵈ
import Data.Nat.Coprimality as ℕᶜ
open import Level
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
infix 4 _∣_
_∣_ : Rel ℤ 0ℓ
_∣_ = ℕᵈ._∣_ on ∣_∣
open ℕᵈ public using (divides)
*-monoʳ-∣ : ∀ k → (k *_) Preserves _∣_ ⟶ _∣_
*-monoʳ-∣ k {i} {j} i∣j = begin
∣ k * i ∣ ≡⟨ abs-*-commute k i ⟩
∣ k ∣ ℕ.* ∣ i ∣ ∣⟨ ℕᵈ.*-cong ∣ k ∣ i∣j ⟩
∣ k ∣ ℕ.* ∣ j ∣ ≡⟨ sym (abs-*-commute k j) ⟩
∣ k * j ∣ ∎
where open ℕᵈ.∣-Reasoning
*-monoˡ-∣ : ∀ k → (_* k) Preserves _∣_ ⟶ _∣_
*-monoˡ-∣ k {i} {j}
rewrite *-comm i k
| *-comm j k
= *-monoʳ-∣ k
*-cancelˡ-∣ : ∀ k {i j} → k ≢ + 0 → k * i ∣ k * j → i ∣ j
*-cancelˡ-∣ k {i} {j} k≢0 k*i∣k*j = ℕᵈ./-cong (ℕ.pred ∣ k ∣) $ begin
let ∣k∣-is-suc = ℕᵖ.m≢0⇒suc[pred[m]]≡m (k≢0 ∘ ∣n∣≡0⇒n≡0) in
ℕ.suc (ℕ.pred ∣ k ∣) ℕ.* ∣ i ∣ ≡⟨ cong (ℕ._* ∣ i ∣) (∣k∣-is-suc) ⟩
∣ k ∣ ℕ.* ∣ i ∣ ≡⟨ sym (abs-*-commute k i) ⟩
∣ k * i ∣ ∣⟨ k*i∣k*j ⟩
∣ k * j ∣ ≡⟨ abs-*-commute k j ⟩
∣ k ∣ ℕ.* ∣ j ∣ ≡⟨ cong (ℕ._* ∣ j ∣) (sym ∣k∣-is-suc) ⟩
ℕ.suc (ℕ.pred ∣ k ∣) ℕ.* ∣ j ∣ ∎
where open ℕᵈ.∣-Reasoning
*-cancelʳ-∣ : ∀ k {i j} → k ≢ + 0 → i * k ∣ j * k → i ∣ j
*-cancelʳ-∣ k {i} {j} ≢0 = *-cancelˡ-∣ k ≢0 ∘
subst₂ _∣_ (*-comm i k) (*-comm j k)