------------------------------------------------------------------------
-- The Agda standard library
--
-- Lemmas for use in proving the polynomial homomorphism.
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

open import Tactic.RingSolver.Core.Polynomial.Parameters

module Tactic.RingSolver.Core.Polynomial.Homomorphism.Lemmas
  {r₁ r₂ r₃ r₄}
  (homo : Homomorphism r₁ r₂ r₃ r₄)
  where

open import Data.Bool                                  using (Bool;true;false)
open import Data.Nat.Base as                          using (; suc; zero; compare; _≤′_; ≤′-step; ≤′-refl)
open import Data.Nat.Properties as ℕₚ                  using (≤′-trans)
open import Data.Vec.Base as Vec                       using (Vec; _∷_)
open import Data.Fin                                   using (Fin; zero; suc)
open import Data.List                                  using (_∷_; [])
open import Data.Unit using (tt)
open import Data.List.Kleene
open import Data.Product                               using (_,_; proj₁; proj₂; map₁; _×_)
open import Data.Maybe                                 using (nothing; just)
open import Function
open import Level                                      using (lift)
open import Relation.Nullary                           using (Dec; yes; no)
open import Relation.Binary.PropositionalEquality as  using (_≡_)

open Homomorphism homo hiding (_^_)
open import Tactic.RingSolver.Core.Polynomial.Reasoning to
open import Tactic.RingSolver.Core.Polynomial.Base from
open import Tactic.RingSolver.Core.Polynomial.Semantics homo

open import Algebra.Properties.Semiring.Exp.TCOptimised semiring

------------------------------------------------------------------------
-- Power lemmas
--
-- We prove some things about our odd exponentiation operator

-- First, that the optimised operator is the same as normal
-- exponentiation.
pow-opt :  x ρ i  x *⟨ ρ ⟩^ i  ρ ^ i * x
pow-opt x ρ zero = sym (*-identityˡ x)
pow-opt x ρ (suc i) = refl

pow-add :  x y i j  y ^ (suc j) * x *⟨ y ⟩^ i   x *⟨ y ⟩^ (i ℕ.+ suc j)
pow-add x y zero    j = refl
pow-add x y (suc i) j = go x y i j
  where
  go :  x y i j  (y ^ suc j) * ((y ^ suc i) * x)  y ^ suc (i ℕ.+ suc j) * x
  go x y zero    j = sym (*-assoc _ _ _)
  go x y (suc i) j = begin
    (y ^ suc j) * (y ^ (suc i) * y * x)    ≈⟨ *≫ *-assoc _ y x 
    (y ^ suc j) * (y ^ (suc i) * (y * x))  ≈⟨ go (y * x) y i j 
    y ^ suc (i ℕ.+ suc j) * (y * x)        ≈⟨ sym (*-assoc _ y x) 
    y ^ suc (suc i ℕ.+ suc j) * x          

-- Here we show a homomorphism on exponentiation, i.e. that using the
-- exponentiation function on polynomials and then evaluating is the same
-- as evaluating and then exponentiating.
pow-hom :  {n} i
         (xs : Coeff n +)
          ρ ρs
         ⅀⟦ xs  (ρ , ρs) *⟨ ρ ⟩^ i  ⅀⟦ xs ⍓+ i  (ρ , ρs)
pow-hom zero (x Δ j & xs) ρ ρs rewrite ℕₚ.+-identityʳ j = refl
pow-hom (suc i) (x ≠0 Δ j & xs) ρ ρs =
  begin
    ρ ^ (suc i) * (((x , xs) ⟦∷⟧ (ρ , ρs)) *⟨ ρ ⟩^ j)
  ≈⟨ pow-add _ ρ j i 
    (((x , xs) ⟦∷⟧ (ρ , ρs)) *⟨ ρ ⟩^ (j ℕ.+ suc i))
  

-- Proving a congruence (we don't get this for free because we're using
-- setoids).
pow-mul-cong :  {x y}  x  y   ρ i  x *⟨ ρ ⟩^ i  y *⟨ ρ ⟩^ i
pow-mul-cong x≈y ρ zero    = x≈y
pow-mul-cong x≈y ρ (suc i) = *≫ x≈y

-- Demonstrating that the proof of zeroness is correct.
zero-hom :  {n} (p : Poly n)  Zero p  (ρs : Vec Carrier n)  0#   p  ρs
zero-hom (Κ x   i≤n) p≡0 ρs = Zero-C⟶Zero-R x p≡0

--   x¹⁺ⁿ = xxⁿ
pow-suc :  x i  x ^ suc i  x * x ^ i
pow-suc x zero  = sym (*-identityʳ _)
pow-suc x (suc i) = *-comm _ _

--   x¹⁺ⁿ = xⁿx
pow-sucʳ :  x i  x ^ suc i  x ^ i * x
pow-sucʳ x zero  = sym (*-identityˡ _)
pow-sucʳ x (suc i) = refl

-- In the proper evaluation function, we avoid ever inserting an unnecessary 0#
-- like we do here. However, it is easier to prove with the form that does insert
-- 0#. So we write one here, and then prove that it's equivalent to the one that
-- adds a 0#.
⅀?⟦_⟧ :  {n} (xs : Coeff n *)  Carrier × Vec Carrier n  Carrier
⅀?⟦ []   _ = 0#
⅀?⟦  x    = ⅀⟦ x 

_⟦∷⟧?_ :  {n} (x : Poly n × Coeff n *)  Carrier × Vec Carrier n  Carrier
(x , xs) ⟦∷⟧? (ρ , ρs) = ρ * ⅀?⟦ xs  (ρ , ρs) +  x  ρs

⅀?-hom :  {n} (xs : Coeff n +)   ρ  ⅀?⟦  xs  ρ  ⅀⟦ xs  ρ
⅀?-hom _ _ = refl

⟦∷⟧?-hom :  {n} (x : Poly n)   xs ρ ρs  (x , xs) ⟦∷⟧? (ρ , ρs)  (x , xs) ⟦∷⟧ (ρ , ρs)
⟦∷⟧?-hom x ( xs ) ρ ρs = refl
⟦∷⟧?-hom x [] ρ ρs =  (≪+ zeroʳ _)  trans  +-identityˡ _

pow′-hom :  {n} i (xs : Coeff n *)   ρ ρs  ((⅀?⟦ xs  (ρ , ρs)) *⟨ ρ ⟩^ i)  (⅀?⟦ xs ⍓* i  (ρ , ρs))
pow′-hom i ( xs ) ρ ρs = pow-hom i xs ρ ρs
pow′-hom zero [] ρ ρs = refl
pow′-hom (suc i) [] ρ ρs = zeroʳ _

-- Here, we show that the normalising cons is correct.
-- This lets us prove with respect to the non-normalising form, especially
-- when we're using the folds.
∷↓-hom-0 :  {n} (x : Poly n)   xs ρ ρs  ⅀?⟦ x Δ 0 ∷↓ xs  (ρ , ρs)  (x , xs) ⟦∷⟧ (ρ , ρs)
∷↓-hom-0 x xs      ρ ρs with zero? x
∷↓-hom-0 x xs      ρ ρs | no ¬p = refl
∷↓-hom-0 x []      ρ ρs | yes p = zero-hom x p ρs
∷↓-hom-0 x ( xs ) ρ ρs | yes p =
  begin
    ⅀⟦ xs ⍓+ 1  (ρ , ρs)
  ≈⟨ sym (pow-hom 1 xs ρ ρs) 
    ρ * ⅀⟦ xs  (ρ , ρs)
  ≈⟨ sym (+-identityʳ _)  trans  (+≫ zero-hom x p ρs) 
    ρ * ⅀⟦ xs  (ρ , ρs) +  x  ρs
  

∷↓-hom-s :  {n} (x : Poly n)   i xs ρ ρs  ⅀?⟦ x Δ suc i ∷↓ xs  (ρ , ρs)  (ρ ^ suc i) * (x , xs) ⟦∷⟧ (ρ , ρs)
∷↓-hom-s x i xs ρ ρs with zero? x
∷↓-hom-s x i xs ρ ρs | no ¬p = refl
∷↓-hom-s x i [] ρ ρs | yes p = sym ((*≫ sym (zero-hom x p ρs))  trans  zeroʳ _)
∷↓-hom-s x i ( xs ) ρ ρs | yes p =
  begin
    ⅀⟦ xs ⍓+ (suc (suc i))  (ρ , ρs)
  ≈⟨ sym (pow-hom (suc (suc i)) xs ρ ρs) 
    (ρ ^ suc (suc i)) * ⅀⟦ xs  (ρ , ρs)
  ≈⟨ *-assoc _ _ _ 
    (ρ ^ suc i) * (ρ * ⅀⟦ xs  (ρ , ρs))
  ≈⟨ *≫ (sym (+-identityʳ _)  trans  (+≫ zero-hom x p ρs)) 
    (ρ ^ suc i) * (ρ * ⅀⟦ xs  (ρ , ρs) +  x  ρs)
  

∷↓-hom :  {n}
        (x : Poly n)
         i xs ρ ρs
        ⅀?⟦ x Δ i ∷↓ xs  (ρ , ρs)  ρ ^ i * ((x , xs) ⟦∷⟧ (ρ , ρs))
∷↓-hom x zero  xs ρ ρs = ∷↓-hom-0 x xs ρ ρs  trans  sym (*-identityˡ _)
∷↓-hom x (suc i) xs ρ ρs = ∷↓-hom-s x i xs ρ ρs

⟦∷⟧-hom :  {n}
        (x : Poly n)
        (xs : Coeff n *)
         ρ ρs  (x , xs) ⟦∷⟧ (ρ , ρs)  ρ * ⅀?⟦ xs  (ρ , ρs) +  x  ρs
⟦∷⟧-hom x []     ρ ρs = sym ((≪+ zeroʳ _)  trans  +-identityˡ _)
⟦∷⟧-hom x ( xs) ρ ρs = refl

-- This proves that injecting a polynomial into more variables is correct.
-- Basically, we show that if a polynomial doesn't care about the first few
-- variables, we can drop them from the input vector.
⅀-⊐↑-hom :  {i n m}
          (xs : Coeff i +)
          (si≤n : suc i ≤′ n)
          (sn≤m : suc n ≤′ m)
           ρ
          ⅀⟦ xs  (drop-1 (≤′-step si≤n  ≤′-trans  sn≤m) ρ)
          ⅀⟦ xs  (drop-1 si≤n (proj₂ (drop-1 sn≤m ρ)))
⅀-⊐↑-hom xs si≤n ≤′-refl        (_  _) = refl
⅀-⊐↑-hom xs si≤n (≤′-step sn≤m) (_  ρ) = ⅀-⊐↑-hom xs si≤n sn≤m ρ

⊐↑-hom :  {n m}
        (x : Poly n)
        (sn≤m : suc n ≤′ m)
         ρ
         x ⊐↑ sn≤m  ρ   x  (proj₂ (drop-1 sn≤m ρ))
⊐↑-hom (Κ x   i≤sn) _ _ = refl
⊐↑-hom ( xs  i≤sn) = ⅀-⊐↑-hom xs i≤sn

trans-join-coeffs-hom :  {i j-1 n}
                       (i≤j-1 : suc i ≤′ j-1)
                       (j≤n   : suc j-1 ≤′ n)
                       (xs : Coeff i +)
                        ρ
                       ⅀⟦ xs  (drop-1 i≤j-1 (proj₂ (drop-1 j≤n ρ)))  ⅀⟦ xs  (drop-1 (≤′-step i≤j-1  ≤′-trans  j≤n) ρ)
trans-join-coeffs-hom i<j-1 ≤′-refl       xs (_  _) = refl
trans-join-coeffs-hom i<j-1 (≤′-step j<n) xs (_  ρ) = trans-join-coeffs-hom i<j-1 j<n xs ρ

trans-join-hom :  {i j-1 n}
       (i≤j-1 : i ≤′ j-1)
       (j≤n   : suc j-1 ≤′ n)
       (x : FlatPoly i)
        ρ
        x  i≤j-1  (proj₂ (drop-1 j≤n ρ))   x  (≤′-step i≤j-1  ≤′-trans  j≤n)  ρ
trans-join-hom i≤j-1 j≤n (Κ x) _ = refl
trans-join-hom i≤j-1 j≤n ( x) = trans-join-coeffs-hom i≤j-1 j≤n x

⊐↓-hom :  {n m}
        (xs : Coeff n *)
        (sn≤m : suc n ≤′ m)
         ρ
         xs ⊐↓ sn≤m  ρ  ⅀?⟦ xs  (drop-1 sn≤m ρ)
⊐↓-hom []                       sn≤m _ = 0-homo
⊐↓-hom ( x₁   Δ zero  &  xs) sn≤m _ = refl
⊐↓-hom ( x    Δ suc j & xs )      sn≤m _ = refl
⊐↓-hom ( _≠0 x {x≠0} Δ zero  & []) sn≤m ρs =
  let (ρ , ρs′) = drop-1 sn≤m ρs
  in
  begin
     x ⊐↑ sn≤m  ρs
  ≈⟨ ⊐↑-hom x sn≤m ρs 
     x  ρs′
  

drop-1⇒lookup :  {n} (i : Fin n) (ρs : Vec Carrier n) 
                proj₁ (drop-1 (space≤′n i) ρs)  Vec.lookup ρs i
drop-1⇒lookup zero    (ρ  ρs) = ≡.refl
drop-1⇒lookup (suc i) (ρ  ρs) = drop-1⇒lookup i ρs

-- The fold: this function saves us hundreds of lines of proofs in the rest of the
-- homomorphism proof.
-- Many of the functions on polynomials are defined using para: this function allows
-- us to prove properties of those functions (in a foldr-fusion style) *ignoring*
-- optimisations we have made to the polynomial structure.
poly-foldR :  {n} ρ ρs
         ([f] : Fold n)
         (f : Carrier  Carrier)
         (∀ {x y}  x  y  f x  f y)
         (∀ x y  x * f y  f (x * y))
         (∀ y {ys} zs  ⅀?⟦ ys  (ρ , ρs)  f (⅀?⟦ zs  (ρ , ρs))  [f] (y , ys) ⟦∷⟧? (ρ , ρs)  f ((y , zs) ⟦∷⟧? (ρ , ρs)) )
         (f 0#  0#)
          xs
         ⅀?⟦ para [f] xs  (ρ , ρs)  f (⅀⟦ xs  (ρ , ρs))
poly-foldR ρ ρs f e cng dist step base (x ≠0 Δ suc i & []) =
  let y,ys = f (x , [])
      y = proj₁ y,ys
      ys = proj₂ y,ys
  in
  begin
    ⅀?⟦ y Δ suc i ∷↓ ys  (ρ , ρs)
  ≈⟨ ∷↓-hom-s y i ys ρ ρs 
    (ρ ^ suc i) * ((y , ys) ⟦∷⟧ (ρ , ρs))
  ≈˘⟨ *≫ ⟦∷⟧?-hom y ys ρ ρs 
    (ρ ^ suc i) * ((y , ys) ⟦∷⟧? (ρ , ρs))
  ≈⟨ *≫ step x [] (sym base) 
    (ρ ^ suc i) * e ((x , []) ⟦∷⟧? (ρ , ρs))
  ≈⟨ *≫ cng (⟦∷⟧?-hom x [] ρ ρs) 
    (ρ ^ suc i) * e ((x , []) ⟦∷⟧ (ρ , ρs))
  ≈⟨ dist _ _   
    e ((ρ ^ suc i) * ((x , []) ⟦∷⟧ (ρ , ρs)))
  
poly-foldR ρ ρs f e cng dist step base (x ≠0 Δ suc i &  xs) =
  let ys = para f xs
      y,zs = f (x , ys)
      y = proj₁ y,zs
      zs = proj₂ y,zs
  in
  begin
    ⅀?⟦ y Δ suc i ∷↓ zs  (ρ , ρs)
  ≈⟨ ∷↓-hom-s y i zs ρ ρs 
    (ρ ^ suc i) * ((y , zs) ⟦∷⟧ (ρ , ρs))
  ≈˘⟨ *≫ ⟦∷⟧?-hom y zs ρ ρs 
    (ρ ^ suc i) * ((y , zs) ⟦∷⟧? (ρ , ρs))
  ≈⟨ *≫ step x ( xs) (poly-foldR ρ ρs f e cng dist step base xs) 
    (ρ ^ suc i) * e ((x , ( xs )) ⟦∷⟧? (ρ , ρs))
  ≈⟨ *≫ cng (⟦∷⟧?-hom x ( xs ) ρ ρs) 
    (ρ ^ suc i) * e ((x , ( xs )) ⟦∷⟧ (ρ , ρs))
  ≈⟨ dist _ _   
    e (ρ ^ suc i * ((x , ( xs )) ⟦∷⟧ (ρ , ρs)))
  
poly-foldR ρ ρs f e cng dist step base (x ≠0 Δ ℕ.zero & []) =
  let y,zs = f (x , [])
      y = proj₁ y,zs
      zs = proj₂ y,zs
  in
  begin
    ⅀?⟦ y Δ ℕ.zero ∷↓ zs  (ρ , ρs)
  ≈⟨ ∷↓-hom-0 y zs ρ ρs 
    ((y , zs) ⟦∷⟧ (ρ , ρs))
  ≈˘⟨ ⟦∷⟧?-hom y zs ρ ρs 
    ((y , zs) ⟦∷⟧? (ρ , ρs))
  ≈⟨ step x [] (sym base) 
    e ((x , []) ⟦∷⟧? (ρ , ρs))
  ≈⟨ cng (⟦∷⟧?-hom x [] ρ ρs) 
    e ((x , []) ⟦∷⟧ (ρ , ρs))
  
poly-foldR ρ ρs f e cng dist step base (x ≠0 Δ ℕ.zero & ( xs )) =
  let ys = para f xs
      y,zs = f (x , ys)
      y = proj₁ y,zs
      zs = proj₂ y,zs
  in
  begin
    ⅀?⟦ y Δ ℕ.zero ∷↓ zs  (ρ , ρs)
  ≈⟨ ∷↓-hom-0 y zs ρ ρs 
    ((y , zs) ⟦∷⟧ (ρ , ρs))
  ≈˘⟨ ⟦∷⟧?-hom y zs ρ ρs 
    ((y , zs) ⟦∷⟧? (ρ , ρs))
  ≈⟨ step x ( xs ) (poly-foldR ρ ρs f e cng dist step base xs) 
    e ((x , ( xs )) ⟦∷⟧ (ρ , ρs))
  ≈⟨ cng (⟦∷⟧?-hom x ( xs ) ρ ρs) 
    e ((x , ( xs )) ⟦∷⟧ (ρ , ρs))
  

poly-mapR :  {n} ρ ρs
           ([f] : Poly n  Poly n)
           (f : Carrier  Carrier)
           (∀ {x y}  x  y  f x  f y)
           (∀ x y  x * f y  f (x * y))
           (∀ x y  f (x + y)  f x + f y)
           (∀ y   [f] y  ρs  f ( y  ρs) )
           (f 0#  0#)
            xs
           ⅀?⟦ poly-map [f] xs  (ρ , ρs)  f (⅀⟦ xs  (ρ , ρs))
poly-mapR ρ ρs [f] f cng *-dist +-dist step′ base xs = poly-foldR ρ ρs (map₁ [f]) f cng *-dist step base xs
  where
  step :  y {ys} zs  ⅀?⟦ ys  (ρ , ρs)  f (⅀?⟦ zs  (ρ , ρs)) →(map₁ [f] (y , ys) ⟦∷⟧? (ρ , ρs))  f ((y , zs) ⟦∷⟧? (ρ , ρs))
  step y {ys} zs ys≋zs =
    begin
      map₁ [f] (y , ys) ⟦∷⟧? (ρ , ρs)
    ≡⟨⟩
      ρ * ⅀?⟦ ys  (ρ , ρs) +  [f] y  ρs
    ≈⟨ ((*≫ ys≋zs)  trans  *-dist ρ _)  +-cong  step′ y 
      f (ρ * ⅀?⟦ zs  (ρ , ρs)) + f ( y  ρs)
    ≈⟨ sym (+-dist _ _) 
      f ((y , zs) ⟦∷⟧? (ρ , ρs))