open import Algebra
module Algebra.Properties.BooleanAlgebra
{b₁ b₂} (B : BooleanAlgebra b₁ b₂)
where
open BooleanAlgebra B
import Algebra.Properties.DistributiveLattice
private
open module DL = Algebra.Properties.DistributiveLattice
distributiveLattice public
hiding (replace-equality)
open import Algebra.Structures
open import Algebra.FunctionProperties _≈_
open import Algebra.FunctionProperties.Consequences
record {isEquivalence = isEquivalence}
open import Relation.Binary.EqReasoning setoid
open import Relation.Binary
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (_⇔_; module Equivalence)
open import Data.Product
∨-complementˡ : LeftInverse ⊤ ¬_ _∨_
∨-complementˡ = comm+invʳ⇒invˡ ∨-comm ∨-complementʳ
∨-complement : Inverse ⊤ ¬_ _∨_
∨-complement = ∨-complementˡ , ∨-complementʳ
∧-complementˡ : LeftInverse ⊥ ¬_ _∧_
∧-complementˡ = comm+invʳ⇒invˡ ∧-comm ∧-complementʳ
∧-complement : Inverse ⊥ ¬_ _∧_
∧-complement = ∧-complementˡ , ∧-complementʳ
∧-∨-isBooleanAlgebra : IsBooleanAlgebra _≈_ _∧_ _∨_ ¬_ ⊥ ⊤
∧-∨-isBooleanAlgebra = record
{ isDistributiveLattice = ∧-∨-isDistributiveLattice
; ∨-complementʳ = ∧-complementʳ
; ∧-complementʳ = ∨-complementʳ
; ¬-cong = ¬-cong
}
∧-∨-booleanAlgebra : BooleanAlgebra _ _
∧-∨-booleanAlgebra = record
{ _∧_ = _∨_
; _∨_ = _∧_
; ⊤ = ⊥
; ⊥ = ⊤
; isBooleanAlgebra = ∧-∨-isBooleanAlgebra
}
∧-identityʳ : RightIdentity ⊤ _∧_
∧-identityʳ x = begin
x ∧ ⊤ ≈⟨ refl ⟨ ∧-cong ⟩ sym (∨-complementʳ _) ⟩
x ∧ (x ∨ ¬ x) ≈⟨ proj₂ absorptive _ _ ⟩
x ∎
∧-identityˡ : LeftIdentity ⊤ _∧_
∧-identityˡ = comm+idʳ⇒idˡ ∧-comm ∧-identityʳ
∧-identity : Identity ⊤ _∧_
∧-identity = ∧-identityˡ , ∧-identityʳ
∨-identityʳ : RightIdentity ⊥ _∨_
∨-identityʳ x = begin
x ∨ ⊥ ≈⟨ refl ⟨ ∨-cong ⟩ sym (∧-complementʳ _) ⟩
x ∨ x ∧ ¬ x ≈⟨ proj₁ absorptive _ _ ⟩
x ∎
∨-identityˡ : LeftIdentity ⊥ _∨_
∨-identityˡ = comm+idʳ⇒idˡ ∨-comm ∨-identityʳ
∨-identity : Identity ⊥ _∨_
∨-identity = ∨-identityˡ , ∨-identityʳ
∧-zeroʳ : RightZero ⊥ _∧_
∧-zeroʳ x = begin
x ∧ ⊥ ≈⟨ refl ⟨ ∧-cong ⟩ sym (∧-complementʳ _) ⟩
x ∧ x ∧ ¬ x ≈⟨ sym $ ∧-assoc _ _ _ ⟩
(x ∧ x) ∧ ¬ x ≈⟨ ∧-idempotent _ ⟨ ∧-cong ⟩ refl ⟩
x ∧ ¬ x ≈⟨ ∧-complementʳ _ ⟩
⊥ ∎
∧-zeroˡ : LeftZero ⊥ _∧_
∧-zeroˡ = comm+zeʳ⇒zeˡ ∧-comm ∧-zeroʳ
∧-zero : Zero ⊥ _∧_
∧-zero = ∧-zeroˡ , ∧-zeroʳ
∨-zeroʳ : ∀ x → x ∨ ⊤ ≈ ⊤
∨-zeroʳ x = begin
x ∨ ⊤ ≈⟨ refl ⟨ ∨-cong ⟩ sym (∨-complementʳ _) ⟩
x ∨ x ∨ ¬ x ≈⟨ sym $ ∨-assoc _ _ _ ⟩
(x ∨ x) ∨ ¬ x ≈⟨ ∨-idempotent _ ⟨ ∨-cong ⟩ refl ⟩
x ∨ ¬ x ≈⟨ ∨-complementʳ _ ⟩
⊤ ∎
∨-zeroˡ : LeftZero ⊤ _∨_
∨-zeroˡ _ = ∨-comm _ _ ⟨ trans ⟩ ∨-zeroʳ _
∨-zero : Zero ⊤ _∨_
∨-zero = ∨-zeroˡ , ∨-zeroʳ
∨-isSemigroup : IsSemigroup _≈_ _∨_
∨-isSemigroup = record
{ isEquivalence = isEquivalence
; assoc = ∨-assoc
; ∙-cong = ∨-cong
}
∧-isSemigroup : IsSemigroup _≈_ _∧_
∧-isSemigroup = record
{ isEquivalence = isEquivalence
; assoc = ∧-assoc
; ∙-cong = ∧-cong
}
∨-⊥-isMonoid : IsMonoid _≈_ _∨_ ⊥
∨-⊥-isMonoid = record
{ isSemigroup = ∨-isSemigroup
; identity = ∨-identity
}
∧-⊤-isMonoid : IsMonoid _≈_ _∧_ ⊤
∧-⊤-isMonoid = record
{ isSemigroup = ∧-isSemigroup
; identity = ∧-identity
}
∨-⊥-isCommutativeMonoid : IsCommutativeMonoid _≈_ _∨_ ⊥
∨-⊥-isCommutativeMonoid = record
{ isSemigroup = ∨-isSemigroup
; identityˡ = ∨-identityˡ
; comm = ∨-comm
}
∧-⊤-isCommutativeMonoid : IsCommutativeMonoid _≈_ _∧_ ⊤
∧-⊤-isCommutativeMonoid = record
{ isSemigroup = ∧-isSemigroup
; identityˡ = ∧-identityˡ
; comm = ∧-comm
}
∨-∧-isCommutativeSemiring : IsCommutativeSemiring _≈_ _∨_ _∧_ ⊥ ⊤
∨-∧-isCommutativeSemiring = record
{ +-isCommutativeMonoid = ∨-⊥-isCommutativeMonoid
; *-isCommutativeMonoid = ∧-⊤-isCommutativeMonoid
; distribʳ = proj₂ ∧-∨-distrib
; zeroˡ = ∧-zeroˡ
}
∨-∧-commutativeSemiring : CommutativeSemiring _ _
∨-∧-commutativeSemiring = record
{ _+_ = _∨_
; _*_ = _∧_
; 0# = ⊥
; 1# = ⊤
; isCommutativeSemiring = ∨-∧-isCommutativeSemiring
}
∧-∨-isCommutativeSemiring : IsCommutativeSemiring _≈_ _∧_ _∨_ ⊤ ⊥
∧-∨-isCommutativeSemiring = record
{ +-isCommutativeMonoid = ∧-⊤-isCommutativeMonoid
; *-isCommutativeMonoid = ∨-⊥-isCommutativeMonoid
; distribʳ = proj₂ ∨-∧-distrib
; zeroˡ = ∨-zeroˡ
}
∧-∨-commutativeSemiring : CommutativeSemiring _ _
∧-∨-commutativeSemiring = record
{ _+_ = _∧_
; _*_ = _∨_
; 0# = ⊤
; 1# = ⊥
; isCommutativeSemiring = ∧-∨-isCommutativeSemiring
}
private
lemma : ∀ x y → x ∧ y ≈ ⊥ → x ∨ y ≈ ⊤ → ¬ x ≈ y
lemma x y x∧y=⊥ x∨y=⊤ = begin
¬ x ≈⟨ sym $ ∧-identityʳ _ ⟩
¬ x ∧ ⊤ ≈⟨ refl ⟨ ∧-cong ⟩ sym x∨y=⊤ ⟩
¬ x ∧ (x ∨ y) ≈⟨ proj₁ ∧-∨-distrib _ _ _ ⟩
¬ x ∧ x ∨ ¬ x ∧ y ≈⟨ ∧-complementˡ _ ⟨ ∨-cong ⟩ refl ⟩
⊥ ∨ ¬ x ∧ y ≈⟨ sym x∧y=⊥ ⟨ ∨-cong ⟩ refl ⟩
x ∧ y ∨ ¬ x ∧ y ≈⟨ sym $ proj₂ ∧-∨-distrib _ _ _ ⟩
(x ∨ ¬ x) ∧ y ≈⟨ ∨-complementʳ _ ⟨ ∧-cong ⟩ refl ⟩
⊤ ∧ y ≈⟨ ∧-identityˡ _ ⟩
y ∎
¬⊥=⊤ : ¬ ⊥ ≈ ⊤
¬⊥=⊤ = lemma ⊥ ⊤ (∧-identityʳ _) (∨-zeroʳ _)
¬⊤=⊥ : ¬ ⊤ ≈ ⊥
¬⊤=⊥ = lemma ⊤ ⊥ (∧-zeroʳ _) (∨-identityʳ _)
¬-involutive : Involutive ¬_
¬-involutive x = lemma (¬ x) x (∧-complementˡ _) (∨-complementˡ _)
deMorgan₁ : ∀ x y → ¬ (x ∧ y) ≈ ¬ x ∨ ¬ y
deMorgan₁ x y = lemma (x ∧ y) (¬ x ∨ ¬ y) lem₁ lem₂
where
lem₁ = begin
(x ∧ y) ∧ (¬ x ∨ ¬ y) ≈⟨ proj₁ ∧-∨-distrib _ _ _ ⟩
(x ∧ y) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ (∧-comm _ _ ⟨ ∧-cong ⟩ refl) ⟨ ∨-cong ⟩ refl ⟩
(y ∧ x) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∧-assoc _ _ _ ⟨ ∨-cong ⟩ ∧-assoc _ _ _ ⟩
y ∧ (x ∧ ¬ x) ∨ x ∧ (y ∧ ¬ y) ≈⟨ (refl ⟨ ∧-cong ⟩ ∧-complementʳ _) ⟨ ∨-cong ⟩
(refl ⟨ ∧-cong ⟩ ∧-complementʳ _) ⟩
(y ∧ ⊥) ∨ (x ∧ ⊥) ≈⟨ ∧-zeroʳ _ ⟨ ∨-cong ⟩ ∧-zeroʳ _ ⟩
⊥ ∨ ⊥ ≈⟨ ∨-identityʳ _ ⟩
⊥ ∎
lem₃ = begin
(x ∧ y) ∨ ¬ x ≈⟨ proj₂ ∨-∧-distrib _ _ _ ⟩
(x ∨ ¬ x) ∧ (y ∨ ¬ x) ≈⟨ ∨-complementʳ _ ⟨ ∧-cong ⟩ refl ⟩
⊤ ∧ (y ∨ ¬ x) ≈⟨ ∧-identityˡ _ ⟩
y ∨ ¬ x ≈⟨ ∨-comm _ _ ⟩
¬ x ∨ y ∎
lem₂ = begin
(x ∧ y) ∨ (¬ x ∨ ¬ y) ≈⟨ sym $ ∨-assoc _ _ _ ⟩
((x ∧ y) ∨ ¬ x) ∨ ¬ y ≈⟨ lem₃ ⟨ ∨-cong ⟩ refl ⟩
(¬ x ∨ y) ∨ ¬ y ≈⟨ ∨-assoc _ _ _ ⟩
¬ x ∨ (y ∨ ¬ y) ≈⟨ refl ⟨ ∨-cong ⟩ ∨-complementʳ _ ⟩
¬ x ∨ ⊤ ≈⟨ ∨-zeroʳ _ ⟩
⊤ ∎
deMorgan₂ : ∀ x y → ¬ (x ∨ y) ≈ ¬ x ∧ ¬ y
deMorgan₂ x y = begin
¬ (x ∨ y) ≈⟨ ¬-cong $ sym (¬-involutive _) ⟨ ∨-cong ⟩
sym (¬-involutive _) ⟩
¬ (¬ ¬ x ∨ ¬ ¬ y) ≈⟨ ¬-cong $ sym $ deMorgan₁ _ _ ⟩
¬ ¬ (¬ x ∧ ¬ y) ≈⟨ ¬-involutive _ ⟩
¬ x ∧ ¬ y ∎
replace-equality :
{_≈′_ : Rel Carrier b₂} →
(∀ {x y} → x ≈ y ⇔ (x ≈′ y)) → BooleanAlgebra _ _
replace-equality {_≈′_} ≈⇔≈′ = record
{ _≈_ = _≈′_
; _∨_ = _∨_
; _∧_ = _∧_
; ¬_ = ¬_
; ⊤ = ⊤
; ⊥ = ⊥
; isBooleanAlgebra = record
{ isDistributiveLattice = DistributiveLattice.isDistributiveLattice
(DL.replace-equality ≈⇔≈′)
; ∨-complementʳ = λ x → to ⟨$⟩ ∨-complementʳ x
; ∧-complementʳ = λ x → to ⟨$⟩ ∧-complementʳ x
; ¬-cong = λ i≈j → to ⟨$⟩ ¬-cong (from ⟨$⟩ i≈j)
}
} where open module E {x y} = Equivalence (≈⇔≈′ {x} {y})
module XorRing
(xor : Op₂ Carrier)
(⊕-def : ∀ x y → xor x y ≈ (x ∨ y) ∧ ¬ (x ∧ y))
where
private
infixl 6 _⊕_
_⊕_ : Op₂ Carrier
_⊕_ = xor
helper : ∀ {x y u v} → x ≈ y → u ≈ v → x ∧ ¬ u ≈ y ∧ ¬ v
helper x≈y u≈v = x≈y ⟨ ∧-cong ⟩ ¬-cong u≈v
⊕-cong : Congruent₂ _⊕_
⊕-cong {x} {y} {u} {v} x≈y u≈v = begin
x ⊕ u ≈⟨ ⊕-def _ _ ⟩
(x ∨ u) ∧ ¬ (x ∧ u) ≈⟨ helper (x≈y ⟨ ∨-cong ⟩ u≈v)
(x≈y ⟨ ∧-cong ⟩ u≈v) ⟩
(y ∨ v) ∧ ¬ (y ∧ v) ≈⟨ sym $ ⊕-def _ _ ⟩
y ⊕ v ∎
⊕-comm : Commutative _⊕_
⊕-comm x y = begin
x ⊕ y ≈⟨ ⊕-def _ _ ⟩
(x ∨ y) ∧ ¬ (x ∧ y) ≈⟨ helper (∨-comm _ _) (∧-comm _ _) ⟩
(y ∨ x) ∧ ¬ (y ∧ x) ≈⟨ sym $ ⊕-def _ _ ⟩
y ⊕ x ∎
⊕-¬-distribˡ : ∀ x y → ¬ (x ⊕ y) ≈ ¬ x ⊕ y
⊕-¬-distribˡ x y = begin
¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-def _ _ ⟩
¬ ((x ∨ y) ∧ (¬ (x ∧ y))) ≈⟨ ¬-cong (proj₂ ∧-∨-distrib _ _ _) ⟩
¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (x ∧ y))) ≈⟨ ¬-cong $
refl ⟨ ∨-cong ⟩
(refl ⟨ ∧-cong ⟩
¬-cong (∧-comm _ _)) ⟩
¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (y ∧ x))) ≈⟨ ¬-cong $ lem _ _ ⟨ ∨-cong ⟩ lem _ _ ⟩
¬ ((x ∧ ¬ y) ∨ (y ∧ ¬ x)) ≈⟨ deMorgan₂ _ _ ⟩
¬ (x ∧ ¬ y) ∧ ¬ (y ∧ ¬ x) ≈⟨ deMorgan₁ _ _ ⟨ ∧-cong ⟩ refl ⟩
(¬ x ∨ (¬ ¬ y)) ∧ ¬ (y ∧ ¬ x) ≈⟨ helper (refl ⟨ ∨-cong ⟩ ¬-involutive _)
(∧-comm _ _) ⟩
(¬ x ∨ y) ∧ ¬ (¬ x ∧ y) ≈⟨ sym $ ⊕-def _ _ ⟩
¬ x ⊕ y ∎
where
lem : ∀ x y → x ∧ ¬ (x ∧ y) ≈ x ∧ ¬ y
lem x y = begin
x ∧ ¬ (x ∧ y) ≈⟨ refl ⟨ ∧-cong ⟩ deMorgan₁ _ _ ⟩
x ∧ (¬ x ∨ ¬ y) ≈⟨ proj₁ ∧-∨-distrib _ _ _ ⟩
(x ∧ ¬ x) ∨ (x ∧ ¬ y) ≈⟨ ∧-complementʳ _ ⟨ ∨-cong ⟩ refl ⟩
⊥ ∨ (x ∧ ¬ y) ≈⟨ ∨-identityˡ _ ⟩
x ∧ ¬ y ∎
⊕-¬-distribʳ : ∀ x y → ¬ (x ⊕ y) ≈ x ⊕ ¬ y
⊕-¬-distribʳ x y = begin
¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-comm _ _ ⟩
¬ (y ⊕ x) ≈⟨ ⊕-¬-distribˡ _ _ ⟩
¬ y ⊕ x ≈⟨ ⊕-comm _ _ ⟩
x ⊕ ¬ y ∎
⊕-annihilates-¬ : ∀ x y → x ⊕ y ≈ ¬ x ⊕ ¬ y
⊕-annihilates-¬ x y = begin
x ⊕ y ≈⟨ sym $ ¬-involutive _ ⟩
¬ ¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-¬-distribˡ _ _ ⟩
¬ (¬ x ⊕ y) ≈⟨ ⊕-¬-distribʳ _ _ ⟩
¬ x ⊕ ¬ y ∎
⊕-identityˡ : LeftIdentity ⊥ _⊕_
⊕-identityˡ x = begin
⊥ ⊕ x ≈⟨ ⊕-def _ _ ⟩
(⊥ ∨ x) ∧ ¬ (⊥ ∧ x) ≈⟨ helper (∨-identityˡ _) (∧-zeroˡ _) ⟩
x ∧ ¬ ⊥ ≈⟨ refl ⟨ ∧-cong ⟩ ¬⊥=⊤ ⟩
x ∧ ⊤ ≈⟨ ∧-identityʳ _ ⟩
x ∎
⊕-identityʳ : RightIdentity ⊥ _⊕_
⊕-identityʳ _ = ⊕-comm _ _ ⟨ trans ⟩ ⊕-identityˡ _
⊕-identity : Identity ⊥ _⊕_
⊕-identity = ⊕-identityˡ , ⊕-identityʳ
⊕-inverseˡ : LeftInverse ⊥ id _⊕_
⊕-inverseˡ x = begin
x ⊕ x ≈⟨ ⊕-def _ _ ⟩
(x ∨ x) ∧ ¬ (x ∧ x) ≈⟨ helper (∨-idempotent _) (∧-idempotent _) ⟩
x ∧ ¬ x ≈⟨ ∧-complementʳ _ ⟩
⊥ ∎
⊕-inverseʳ : RightInverse ⊥ id _⊕_
⊕-inverseʳ _ = ⊕-comm _ _ ⟨ trans ⟩ ⊕-inverseˡ _
⊕-inverse : Inverse ⊥ id _⊕_
⊕-inverse = ⊕-inverseˡ , ⊕-inverseʳ
∧-distribˡ-⊕ : _∧_ DistributesOverˡ _⊕_
∧-distribˡ-⊕ x y z = begin
x ∧ (y ⊕ z) ≈⟨ refl ⟨ ∧-cong ⟩ ⊕-def _ _ ⟩
x ∧ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ sym $ ∧-assoc _ _ _ ⟩
(x ∧ (y ∨ z)) ∧ ¬ (y ∧ z) ≈⟨ refl ⟨ ∧-cong ⟩ deMorgan₁ _ _ ⟩
(x ∧ (y ∨ z)) ∧
(¬ y ∨ ¬ z) ≈⟨ sym $ ∨-identityˡ _ ⟩
⊥ ∨
((x ∧ (y ∨ z)) ∧
(¬ y ∨ ¬ z)) ≈⟨ lem₃ ⟨ ∨-cong ⟩ refl ⟩
((x ∧ (y ∨ z)) ∧ ¬ x) ∨
((x ∧ (y ∨ z)) ∧
(¬ y ∨ ¬ z)) ≈⟨ sym $ proj₁ ∧-∨-distrib _ _ _ ⟩
(x ∧ (y ∨ z)) ∧
(¬ x ∨ (¬ y ∨ ¬ z)) ≈⟨ refl ⟨ ∧-cong ⟩
(refl ⟨ ∨-cong ⟩ sym (deMorgan₁ _ _)) ⟩
(x ∧ (y ∨ z)) ∧
(¬ x ∨ ¬ (y ∧ z)) ≈⟨ refl ⟨ ∧-cong ⟩ sym (deMorgan₁ _ _) ⟩
(x ∧ (y ∨ z)) ∧
¬ (x ∧ (y ∧ z)) ≈⟨ helper refl lem₁ ⟩
(x ∧ (y ∨ z)) ∧
¬ ((x ∧ y) ∧ (x ∧ z)) ≈⟨ proj₁ ∧-∨-distrib _ _ _ ⟨ ∧-cong ⟩
refl ⟩
((x ∧ y) ∨ (x ∧ z)) ∧
¬ ((x ∧ y) ∧ (x ∧ z)) ≈⟨ sym $ ⊕-def _ _ ⟩
(x ∧ y) ⊕ (x ∧ z) ∎
where
lem₂ = begin
x ∧ (y ∧ z) ≈⟨ sym $ ∧-assoc _ _ _ ⟩
(x ∧ y) ∧ z ≈⟨ ∧-comm _ _ ⟨ ∧-cong ⟩ refl ⟩
(y ∧ x) ∧ z ≈⟨ ∧-assoc _ _ _ ⟩
y ∧ (x ∧ z) ∎
lem₁ = begin
x ∧ (y ∧ z) ≈⟨ sym (∧-idempotent _) ⟨ ∧-cong ⟩ refl ⟩
(x ∧ x) ∧ (y ∧ z) ≈⟨ ∧-assoc _ _ _ ⟩
x ∧ (x ∧ (y ∧ z)) ≈⟨ refl ⟨ ∧-cong ⟩ lem₂ ⟩
x ∧ (y ∧ (x ∧ z)) ≈⟨ sym $ ∧-assoc _ _ _ ⟩
(x ∧ y) ∧ (x ∧ z) ∎
lem₃ = begin
⊥ ≈⟨ sym $ ∧-zeroʳ _ ⟩
(y ∨ z) ∧ ⊥ ≈⟨ refl ⟨ ∧-cong ⟩ sym (∧-complementʳ _) ⟩
(y ∨ z) ∧ (x ∧ ¬ x) ≈⟨ sym $ ∧-assoc _ _ _ ⟩
((y ∨ z) ∧ x) ∧ ¬ x ≈⟨ ∧-comm _ _ ⟨ ∧-cong ⟩ refl ⟩
(x ∧ (y ∨ z)) ∧ ¬ x ∎
∧-distribʳ-⊕ : _∧_ DistributesOverʳ _⊕_
∧-distribʳ-⊕ = comm+distrˡ⇒distrʳ ⊕-cong ∧-comm ∧-distribˡ-⊕
∧-distrib-⊕ : _∧_ DistributesOver _⊕_
∧-distrib-⊕ = ∧-distribˡ-⊕ , ∧-distribʳ-⊕
private
lemma₂ : ∀ x y u v →
(x ∧ y) ∨ (u ∧ v) ≈
((x ∨ u) ∧ (y ∨ u)) ∧
((x ∨ v) ∧ (y ∨ v))
lemma₂ x y u v = begin
(x ∧ y) ∨ (u ∧ v) ≈⟨ proj₁ ∨-∧-distrib _ _ _ ⟩
((x ∧ y) ∨ u) ∧ ((x ∧ y) ∨ v) ≈⟨ proj₂ ∨-∧-distrib _ _ _
⟨ ∧-cong ⟩
proj₂ ∨-∧-distrib _ _ _ ⟩
((x ∨ u) ∧ (y ∨ u)) ∧
((x ∨ v) ∧ (y ∨ v)) ∎
⊕-assoc : Associative _⊕_
⊕-assoc x y z = sym $ begin
x ⊕ (y ⊕ z) ≈⟨ refl ⟨ ⊕-cong ⟩ ⊕-def _ _ ⟩
x ⊕ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ⊕-def _ _ ⟩
(x ∨ ((y ∨ z) ∧ ¬ (y ∧ z))) ∧
¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ lem₃ ⟨ ∧-cong ⟩ lem₄ ⟩
(((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z)) ∧
(((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ ∧-assoc _ _ _ ⟩
((x ∨ y) ∨ z) ∧
(((x ∨ ¬ y) ∨ ¬ z) ∧
(((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈⟨ refl ⟨ ∧-cong ⟩ lem₅ ⟩
((x ∨ y) ∨ z) ∧
(((¬ x ∨ ¬ y) ∨ z) ∧
(((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈⟨ sym $ ∧-assoc _ _ _ ⟩
(((x ∨ y) ∨ z) ∧ ((¬ x ∨ ¬ y) ∨ z)) ∧
(((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ lem₁ ⟨ ∧-cong ⟩ lem₂ ⟩
(((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z) ∧
¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ≈⟨ sym $ ⊕-def _ _ ⟩
((x ∨ y) ∧ ¬ (x ∧ y)) ⊕ z ≈⟨ sym $ ⊕-def _ _ ⟨ ⊕-cong ⟩ refl ⟩
(x ⊕ y) ⊕ z ∎
where
lem₁ = begin
((x ∨ y) ∨ z) ∧ ((¬ x ∨ ¬ y) ∨ z) ≈⟨ sym $ proj₂ ∨-∧-distrib _ _ _ ⟩
((x ∨ y) ∧ (¬ x ∨ ¬ y)) ∨ z ≈⟨ (refl ⟨ ∧-cong ⟩ sym (deMorgan₁ _ _))
⟨ ∨-cong ⟩ refl ⟩
((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z ∎
lem₂' = begin
(x ∨ ¬ y) ∧ (¬ x ∨ y) ≈⟨ sym $ ∧-identityˡ _ ⟨ ∧-cong ⟩ ∧-identityʳ _ ⟩
(⊤ ∧ (x ∨ ¬ y)) ∧ ((¬ x ∨ y) ∧ ⊤) ≈⟨ sym $
(∨-complementˡ _ ⟨ ∧-cong ⟩ ∨-comm _ _)
⟨ ∧-cong ⟩
(refl ⟨ ∧-cong ⟩ ∨-complementˡ _) ⟩
((¬ x ∨ x) ∧ (¬ y ∨ x)) ∧
((¬ x ∨ y) ∧ (¬ y ∨ y)) ≈⟨ sym $ lemma₂ _ _ _ _ ⟩
(¬ x ∧ ¬ y) ∨ (x ∧ y) ≈⟨ sym $ deMorgan₂ _ _ ⟨ ∨-cong ⟩ ¬-involutive _ ⟩
¬ (x ∨ y) ∨ ¬ ¬ (x ∧ y) ≈⟨ sym (deMorgan₁ _ _) ⟩
¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∎
lem₂ = begin
((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈⟨ sym $ proj₂ ∨-∧-distrib _ _ _ ⟩
((x ∨ ¬ y) ∧ (¬ x ∨ y)) ∨ ¬ z ≈⟨ lem₂' ⟨ ∨-cong ⟩ refl ⟩
¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∨ ¬ z ≈⟨ sym $ deMorgan₁ _ _ ⟩
¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ∎
lem₃ = begin
x ∨ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ refl ⟨ ∨-cong ⟩
(refl ⟨ ∧-cong ⟩ deMorgan₁ _ _) ⟩
x ∨ ((y ∨ z) ∧ (¬ y ∨ ¬ z)) ≈⟨ proj₁ ∨-∧-distrib _ _ _ ⟩
(x ∨ (y ∨ z)) ∧ (x ∨ (¬ y ∨ ¬ z)) ≈⟨ sym (∨-assoc _ _ _) ⟨ ∧-cong ⟩
sym (∨-assoc _ _ _) ⟩
((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z) ∎
lem₄' = begin
¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ deMorgan₁ _ _ ⟩
¬ (y ∨ z) ∨ ¬ ¬ (y ∧ z) ≈⟨ deMorgan₂ _ _ ⟨ ∨-cong ⟩ ¬-involutive _ ⟩
(¬ y ∧ ¬ z) ∨ (y ∧ z) ≈⟨ lemma₂ _ _ _ _ ⟩
((¬ y ∨ y) ∧ (¬ z ∨ y)) ∧
((¬ y ∨ z) ∧ (¬ z ∨ z)) ≈⟨ (∨-complementˡ _ ⟨ ∧-cong ⟩ ∨-comm _ _)
⟨ ∧-cong ⟩
(refl ⟨ ∧-cong ⟩ ∨-complementˡ _) ⟩
(⊤ ∧ (y ∨ ¬ z)) ∧
((¬ y ∨ z) ∧ ⊤) ≈⟨ ∧-identityˡ _ ⟨ ∧-cong ⟩ ∧-identityʳ _ ⟩
(y ∨ ¬ z) ∧ (¬ y ∨ z) ∎
lem₄ = begin
¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ deMorgan₁ _ _ ⟩
¬ x ∨ ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ refl ⟨ ∨-cong ⟩ lem₄' ⟩
¬ x ∨ ((y ∨ ¬ z) ∧ (¬ y ∨ z)) ≈⟨ proj₁ ∨-∧-distrib _ _ _ ⟩
(¬ x ∨ (y ∨ ¬ z)) ∧
(¬ x ∨ (¬ y ∨ z)) ≈⟨ sym (∨-assoc _ _ _) ⟨ ∧-cong ⟩
sym (∨-assoc _ _ _) ⟩
((¬ x ∨ y) ∨ ¬ z) ∧
((¬ x ∨ ¬ y) ∨ z) ≈⟨ ∧-comm _ _ ⟩
((¬ x ∨ ¬ y) ∨ z) ∧
((¬ x ∨ y) ∨ ¬ z) ∎
lem₅ = begin
((x ∨ ¬ y) ∨ ¬ z) ∧
(((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ sym $ ∧-assoc _ _ _ ⟩
(((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ ¬ y) ∨ z)) ∧
((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-comm _ _ ⟨ ∧-cong ⟩ refl ⟩
(((¬ x ∨ ¬ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z)) ∧
((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-assoc _ _ _ ⟩
((¬ x ∨ ¬ y) ∨ z) ∧
(((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ∎
⊕-isSemigroup : IsSemigroup _≈_ _⊕_
⊕-isSemigroup = record
{ isEquivalence = isEquivalence
; assoc = ⊕-assoc
; ∙-cong = ⊕-cong
}
⊕-⊥-isMonoid : IsMonoid _≈_ _⊕_ ⊥
⊕-⊥-isMonoid = record
{ isSemigroup = ⊕-isSemigroup
; identity = ⊕-identity
}
⊕-⊥-isGroup : IsGroup _≈_ _⊕_ ⊥ id
⊕-⊥-isGroup = record
{ isMonoid = ⊕-⊥-isMonoid
; inverse = ⊕-inverse
; ⁻¹-cong = id
}
⊕-⊥-isAbelianGroup : IsAbelianGroup _≈_ _⊕_ ⊥ id
⊕-⊥-isAbelianGroup = record
{ isGroup = ⊕-⊥-isGroup
; comm = ⊕-comm
}
⊕-∧-isRing : IsRing _≈_ _⊕_ _∧_ id ⊥ ⊤
⊕-∧-isRing = record
{ +-isAbelianGroup = ⊕-⊥-isAbelianGroup
; *-isMonoid = ∧-⊤-isMonoid
; distrib = ∧-distrib-⊕
}
isCommutativeRing : IsCommutativeRing _≈_ _⊕_ _∧_ id ⊥ ⊤
isCommutativeRing = record
{ isRing = ⊕-∧-isRing
; *-comm = ∧-comm
}
commutativeRing : CommutativeRing _ _
commutativeRing = record
{ _+_ = _⊕_
; _*_ = _∧_
; -_ = id
; 0# = ⊥
; 1# = ⊤
; isCommutativeRing = isCommutativeRing
}
infixl 6 _⊕_
_⊕_ : Op₂ Carrier
x ⊕ y = (x ∨ y) ∧ ¬ (x ∧ y)
module DefaultXorRing = XorRing _⊕_ (λ _ _ → refl)