module Data.Bool.Properties where
open import Data.Bool
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence
using (_⇔_; equivalence; module Equivalence)
open import Algebra
open import Algebra.Structures
import Algebra.RingSolver.Simple as Solver
import Algebra.RingSolver.AlmostCommutativeRing as ACR
open import Relation.Binary.PropositionalEquality
hiding ([_]; proof-irrelevance)
open ≡-Reasoning
open import Algebra.FunctionProperties (_≡_ {A = Bool})
open import Data.Product
open import Data.Sum
open import Data.Empty
∨-assoc : Associative _∨_
∨-assoc true y z = refl
∨-assoc false y z = refl
∨-comm : Commutative _∨_
∨-comm true true = refl
∨-comm true false = refl
∨-comm false true = refl
∨-comm false false = refl
∨-identityˡ : LeftIdentity false _∨_
∨-identityˡ _ = refl
∨-identityʳ : RightIdentity false _∨_
∨-identityʳ false = refl
∨-identityʳ true = refl
∨-identity : Identity false _∨_
∨-identity = ∨-identityˡ , ∨-identityʳ
∨-zeroˡ : LeftZero true _∨_
∨-zeroˡ _ = refl
∨-zeroʳ : RightZero true _∨_
∨-zeroʳ false = refl
∨-zeroʳ true = refl
∨-zero : Zero true _∨_
∨-zero = ∨-zeroˡ , ∨-zeroʳ
∨-inverseˡ : LeftInverse true not _∨_
∨-inverseˡ false = refl
∨-inverseˡ true = refl
∨-inverseʳ : RightInverse true not _∨_
∨-inverseʳ x = ∨-comm x (not x) ⟨ trans ⟩ ∨-inverseˡ x
∨-inverse : Inverse true not _∨_
∨-inverse = ∨-inverseˡ , ∨-inverseʳ
∨-idem : Idempotent _∨_
∨-idem false = refl
∨-idem true = refl
∨-sel : Selective _∨_
∨-sel false y = inj₂ refl
∨-sel true y = inj₁ refl
∨-isSemigroup : IsSemigroup _≡_ _∨_
∨-isSemigroup = record
{ isEquivalence = isEquivalence
; assoc = ∨-assoc
; ∙-cong = cong₂ _∨_
}
∨-isCommutativeMonoid : IsCommutativeMonoid _≡_ _∨_ false
∨-isCommutativeMonoid = record
{ isSemigroup = ∨-isSemigroup
; identityˡ = λ _ → refl
; comm = ∨-comm
}
∧-assoc : Associative _∧_
∧-assoc true y z = refl
∧-assoc false y z = refl
∧-comm : Commutative _∧_
∧-comm true true = refl
∧-comm true false = refl
∧-comm false true = refl
∧-comm false false = refl
∧-identityˡ : LeftIdentity true _∧_
∧-identityˡ _ = refl
∧-identityʳ : RightIdentity true _∧_
∧-identityʳ false = refl
∧-identityʳ true = refl
∧-identity : Identity true _∧_
∧-identity = ∧-identityˡ , ∧-identityʳ
∧-zeroˡ : LeftZero false _∧_
∧-zeroˡ _ = refl
∧-zeroʳ : RightZero false _∧_
∧-zeroʳ false = refl
∧-zeroʳ true = refl
∧-zero : Zero false _∧_
∧-zero = ∧-zeroˡ , ∧-zeroʳ
∧-inverseˡ : LeftInverse false not _∧_
∧-inverseˡ false = refl
∧-inverseˡ true = refl
∧-inverseʳ : RightInverse false not _∧_
∧-inverseʳ x = ∧-comm x (not x) ⟨ trans ⟩ ∧-inverseˡ x
∧-inverse : Inverse false not _∧_
∧-inverse = ∧-inverseˡ , ∧-inverseʳ
∧-idem : Idempotent _∧_
∧-idem false = refl
∧-idem true = refl
∧-sel : Selective _∧_
∧-sel false y = inj₁ refl
∧-sel true y = inj₂ refl
∧-distribˡ-∨ : _∧_ DistributesOverˡ _∨_
∧-distribˡ-∨ true y z = refl
∧-distribˡ-∨ false y z = refl
∧-distribʳ-∨ : _∧_ DistributesOverʳ _∨_
∧-distribʳ-∨ x y z = begin
(y ∨ z) ∧ x ≡⟨ ∧-comm (y ∨ z) x ⟩
x ∧ (y ∨ z) ≡⟨ ∧-distribˡ-∨ x y z ⟩
x ∧ y ∨ x ∧ z ≡⟨ cong₂ _∨_ (∧-comm x y) (∧-comm x z) ⟩
y ∧ x ∨ z ∧ x ∎
∧-distrib-∨ : _∧_ DistributesOver _∨_
∧-distrib-∨ = ∧-distribˡ-∨ , ∧-distribʳ-∨
∨-distribˡ-∧ : _∨_ DistributesOverˡ _∧_
∨-distribˡ-∧ true y z = refl
∨-distribˡ-∧ false y z = refl
∨-distribʳ-∧ : _∨_ DistributesOverʳ _∧_
∨-distribʳ-∧ x y z = begin
(y ∧ z) ∨ x ≡⟨ ∨-comm (y ∧ z) x ⟩
x ∨ (y ∧ z) ≡⟨ ∨-distribˡ-∧ x y z ⟩
(x ∨ y) ∧ (x ∨ z) ≡⟨ cong₂ _∧_ (∨-comm x y) (∨-comm x z) ⟩
(y ∨ x) ∧ (z ∨ x) ∎
∨-distrib-∧ : _∨_ DistributesOver _∧_
∨-distrib-∧ = ∨-distribˡ-∧ , ∨-distribʳ-∧
∧-abs-∨ : _∧_ Absorbs _∨_
∧-abs-∨ true y = refl
∧-abs-∨ false y = refl
∨-abs-∧ : _∨_ Absorbs _∧_
∨-abs-∧ true y = refl
∨-abs-∧ false y = refl
∨-∧-absorptive : Absorptive _∨_ _∧_
∨-∧-absorptive = ∨-abs-∧ , ∧-abs-∨
∧-isSemigroup : IsSemigroup _≡_ _∧_
∧-isSemigroup = record
{ isEquivalence = isEquivalence
; assoc = ∧-assoc
; ∙-cong = cong₂ _∧_
}
∧-isCommutativeMonoid : IsCommutativeMonoid _≡_ _∧_ true
∧-isCommutativeMonoid = record
{ isSemigroup = ∧-isSemigroup
; identityˡ = λ _ → refl
; comm = ∧-comm
}
∨-∧-isCommutativeSemiring
: IsCommutativeSemiring _≡_ _∨_ _∧_ false true
∨-∧-isCommutativeSemiring = record
{ +-isCommutativeMonoid = ∨-isCommutativeMonoid
; *-isCommutativeMonoid = ∧-isCommutativeMonoid
; distribʳ = ∧-distribʳ-∨
; zeroˡ = λ _ → refl
}
∨-∧-commutativeSemiring : CommutativeSemiring _ _
∨-∧-commutativeSemiring = record
{ _+_ = _∨_
; _*_ = _∧_
; 0# = false
; 1# = true
; isCommutativeSemiring = ∨-∧-isCommutativeSemiring
}
∧-∨-isCommutativeSemiring
: IsCommutativeSemiring _≡_ _∧_ _∨_ true false
∧-∨-isCommutativeSemiring = record
{ +-isCommutativeMonoid = ∧-isCommutativeMonoid
; *-isCommutativeMonoid = ∨-isCommutativeMonoid
; distribʳ = ∨-distribʳ-∧
; zeroˡ = λ _ → refl
}
∧-∨-commutativeSemiring : CommutativeSemiring _ _
∧-∨-commutativeSemiring = record
{ _+_ = _∧_
; _*_ = _∨_
; 0# = true
; 1# = false
; isCommutativeSemiring = ∧-∨-isCommutativeSemiring
}
∨-∧-isLattice : IsLattice _≡_ _∨_ _∧_
∨-∧-isLattice = record
{ isEquivalence = isEquivalence
; ∨-comm = ∨-comm
; ∨-assoc = ∨-assoc
; ∨-cong = cong₂ _∨_
; ∧-comm = ∧-comm
; ∧-assoc = ∧-assoc
; ∧-cong = cong₂ _∧_
; absorptive = ∨-∧-absorptive
}
∨-∧-isDistributiveLattice : IsDistributiveLattice _≡_ _∨_ _∧_
∨-∧-isDistributiveLattice = record
{ isLattice = ∨-∧-isLattice
; ∨-∧-distribʳ = ∨-distribʳ-∧
}
∨-∧-isBooleanAlgebra : IsBooleanAlgebra _≡_ _∨_ _∧_ not true false
∨-∧-isBooleanAlgebra = record
{ isDistributiveLattice = ∨-∧-isDistributiveLattice
; ∨-complementʳ = ∨-inverseʳ
; ∧-complementʳ = ∧-inverseʳ
; ¬-cong = cong not
}
∨-∧-booleanAlgebra : BooleanAlgebra _ _
∨-∧-booleanAlgebra = record
{ _∨_ = _∨_
; _∧_ = _∧_
; ¬_ = not
; ⊤ = true
; ⊥ = false
; isBooleanAlgebra = ∨-∧-isBooleanAlgebra
}
xor-is-ok : ∀ x y → x xor y ≡ (x ∨ y) ∧ not (x ∧ y)
xor-is-ok true y = refl
xor-is-ok false y = sym (∧-identityʳ _)
xor-∧-commutativeRing : CommutativeRing _ _
xor-∧-commutativeRing = commutativeRing
where
import Algebra.Properties.BooleanAlgebra as BA
open BA ∨-∧-booleanAlgebra
open XorRing _xor_ xor-is-ok
not-involutive : Involutive not
not-involutive true = refl
not-involutive false = refl
not-¬ : ∀ {x y} → x ≡ y → x ≢ not y
not-¬ {true} refl ()
not-¬ {false} refl ()
¬-not : ∀ {x y} → x ≢ y → x ≡ not y
¬-not {true} {true} x≢y = ⊥-elim (x≢y refl)
¬-not {true} {false} _ = refl
¬-not {false} {true} _ = refl
¬-not {false} {false} x≢y = ⊥-elim (x≢y refl)
⇔→≡ : {b₁ b₂ b : Bool} → b₁ ≡ b ⇔ b₂ ≡ b → b₁ ≡ b₂
⇔→≡ {true } {true } hyp = refl
⇔→≡ {true } {false} {true } hyp = sym (Equivalence.to hyp ⟨$⟩ refl)
⇔→≡ {true } {false} {false} hyp = Equivalence.from hyp ⟨$⟩ refl
⇔→≡ {false} {true } {true } hyp = Equivalence.from hyp ⟨$⟩ refl
⇔→≡ {false} {true } {false} hyp = sym (Equivalence.to hyp ⟨$⟩ refl)
⇔→≡ {false} {false} hyp = refl
T-≡ : ∀ {b} → T b ⇔ b ≡ true
T-≡ {false} = equivalence (λ ()) (λ ())
T-≡ {true} = equivalence (const refl) (const _)
T-not-≡ : ∀ {b} → T (not b) ⇔ b ≡ false
T-not-≡ {false} = equivalence (const refl) (const _)
T-not-≡ {true} = equivalence (λ ()) (λ ())
T-∧ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) ⇔ (T b₁ × T b₂)
T-∧ {true} {true} = equivalence (const (_ , _)) (const _)
T-∧ {true} {false} = equivalence (λ ()) proj₂
T-∧ {false} {_} = equivalence (λ ()) proj₁
T-∨ : ∀ {b₁ b₂} → T (b₁ ∨ b₂) ⇔ (T b₁ ⊎ T b₂)
T-∨ {true} {b₂} = equivalence inj₁ (const _)
T-∨ {false} {true} = equivalence inj₂ (const _)
T-∨ {false} {false} = equivalence inj₁ [ id , id ]
T-irrelevance : IrrelevantPred T
T-irrelevance {true} _ _ = refl
T-irrelevance {false} () ()
push-function-into-if :
∀ {a b} {A : Set a} {B : Set b} (f : A → B) x {y z} →
f (if x then y else z) ≡ (if x then f y else f z)
push-function-into-if _ true = refl
push-function-into-if _ false = refl
module RingSolver =
Solver (ACR.fromCommutativeSemiring ∨-∧-commutativeSemiring) _≟_
module XorRingSolver =
Solver (ACR.fromCommutativeRing xor-∧-commutativeRing) _≟_
∧-∨-distˡ = ∧-distribˡ-∨
∧-∨-distʳ = ∧-distribʳ-∨
distrib-∧-∨ = ∧-distrib-∨
∨-∧-distˡ = ∨-distribˡ-∧
∨-∧-distʳ = ∨-distribʳ-∧
∨-∧-distrib = ∨-distrib-∧
∨-∧-abs = ∨-abs-∧
∧-∨-abs = ∧-abs-∨
not-∧-inverseˡ = ∧-inverseˡ
not-∧-inverseʳ = ∧-inverseʳ
not-∧-inverse = ∧-inverse
not-∨-inverseˡ = ∨-inverseˡ
not-∨-inverseʳ = ∨-inverseʳ
not-∨-inverse = ∨-inverse
isCommutativeSemiring-∨-∧ = ∨-∧-isCommutativeSemiring
commutativeSemiring-∨-∧ = ∨-∧-commutativeSemiring
isCommutativeSemiring-∧-∨ = ∧-∨-isCommutativeSemiring
commutativeSemiring-∧-∨ = ∧-∨-commutativeSemiring
isBooleanAlgebra = ∨-∧-isBooleanAlgebra
booleanAlgebra = ∨-∧-booleanAlgebra
commutativeRing-xor-∧ = xor-∧-commutativeRing
proof-irrelevance = T-irrelevance