------------------------------------------------------------------------
-- The Agda standard library
--
-- Homomorphism proofs for addition over polynomials
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

open import Tactic.RingSolver.Core.Polynomial.Parameters

module Tactic.RingSolver.Core.Polynomial.Homomorphism.Addition
  {r₁ r₂ r₃ r₄}
  (homo : Homomorphism r₁ r₂ r₃ r₄)
  where

open import Data.Nat            as   using (; suc; zero; compare; _≤′_; ≤′-step; ≤′-refl)
open import Data.Nat.Properties as ℕₚ using (≤′-trans)
open import Data.Product              using (_,_; _×_; proj₂)
open import Data.List                 using (_∷_; [])
open import Data.List.Kleene
open import Data.Vec                  using (Vec)
open import Function
open import Relation.Unary

import Relation.Binary.PropositionalEquality as 

open Homomorphism homo hiding (_^_)
open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Lemmas homo
open import Tactic.RingSolver.Core.Polynomial.Base from
open import Tactic.RingSolver.Core.Polynomial.Reasoning to
open import Tactic.RingSolver.Core.Polynomial.Semantics homo
open import Algebra.Properties.Semiring.Exp.TCOptimised semiring

mutual
  ⊞-hom :  {n} (xs ys : Poly n) 
           ρ   xs  ys  ρ   xs  ρ +  ys  ρ
  ⊞-hom (xs  i≤n) (ys  j≤n) = ⊞-match-hom (inj-compare i≤n j≤n) xs ys

  ⊞-match-hom :  {i j n} {i≤n : i ≤′ n} {j≤n : j ≤′ n}
                (i-cmp-j : InjectionOrdering i≤n j≤n)
                (xs : FlatPoly i) (ys : FlatPoly j) 
                 ρ   ⊞-match i-cmp-j xs ys  ρ   xs  i≤n  ρ +  ys  j≤n  ρ
  ⊞-match-hom (inj-eq ij≤n) (Κ x) (Κ y) Ρ = +-homo x y
  ⊞-match-hom (inj-eq ij≤n) ( (x Δ i & xs)) ( (y Δ j & ys)) Ρ =
    begin
       ⊞-zip (compare i j) x xs y ys ⊐↓ ij≤n  Ρ
    ≈⟨ ⊐↓-hom (⊞-zip (compare i j) x xs y ys) ij≤n Ρ 
      ⅀?⟦ ⊞-zip (compare i j) x xs y ys  (drop-1 ij≤n Ρ)
    ≈⟨ ⊞-zip-hom (compare i j) x xs y ys (drop-1 ij≤n Ρ) 
      ⅀⟦ x Δ i & xs  (drop-1 ij≤n Ρ) + ⅀⟦ y Δ j & ys  (drop-1 ij≤n Ρ)
    
  ⊞-match-hom (inj-gt i≤n j≤i-1) ( xs) ys Ρ =
    let (ρ , Ρ′) = drop-1 i≤n Ρ
    in
    begin
       ⊞-inj j≤i-1 ys xs ⊐↓ i≤n  Ρ
    ≈⟨ ⊐↓-hom (⊞-inj j≤i-1 ys xs) i≤n Ρ 
      ⅀?⟦ ⊞-inj j≤i-1 ys xs  (drop-1 i≤n Ρ)
    ≈⟨ ⊞-inj-hom j≤i-1 ys xs ρ Ρ′ 
       ys  j≤i-1  (proj₂ (drop-1 i≤n Ρ)) + ⅀⟦ xs  (drop-1 i≤n Ρ)
    ≈⟨ ≪+ trans-join-hom j≤i-1 i≤n ys Ρ 
       ys  (≤′-step j≤i-1  ≤′-trans  i≤n)  Ρ + ⅀⟦ xs  (drop-1 i≤n Ρ)
    ≈⟨ +-comm _ _ 
      ⅀⟦ xs  (drop-1 i≤n Ρ) +  ys  (≤′-step j≤i-1  ≤′-trans  i≤n)  Ρ
    
  ⊞-match-hom (inj-lt i≤j-1 j≤n) xs ( ys) Ρ =
    let (ρ , Ρ′) = drop-1 j≤n Ρ
    in
    begin
       ⊞-inj i≤j-1 xs ys ⊐↓ j≤n  Ρ
    ≈⟨ ⊐↓-hom (⊞-inj i≤j-1 xs ys) j≤n Ρ 
      ⅀?⟦ ⊞-inj i≤j-1 xs ys  (drop-1 j≤n Ρ)
    ≈⟨ ⊞-inj-hom i≤j-1 xs ys ρ Ρ′ 
       xs  i≤j-1  (proj₂ (drop-1 j≤n Ρ)) + ⅀⟦ ys  (drop-1 j≤n Ρ)
    ≈⟨ ≪+ trans-join-hom i≤j-1 j≤n xs Ρ 
       xs  (≤′-step i≤j-1  ≤′-trans  j≤n)  Ρ + ⅀⟦ ys  (drop-1 j≤n Ρ)
    

  ⊞-inj-hom :  {i k}
             (i≤k : i ≤′ k)
             (x : FlatPoly i)
             (ys : Coeff k +)
             (ρ : Carrier)
             (Ρ : Vec Carrier k)
             ⅀?⟦ ⊞-inj i≤k x ys  (ρ , Ρ)   x  i≤k  Ρ + ⅀⟦ ys  (ρ , Ρ)
  ⊞-inj-hom i≤k xs (y  j≤k ≠0 Δ 0 & []) ρ Ρ =
    begin
      ⅀?⟦ ⊞-match (inj-compare j≤k i≤k) y xs Δ 0 ∷↓ []  (ρ , Ρ)
    ≈⟨ ∷↓-hom-0 ((⊞-match (inj-compare j≤k i≤k) y xs)) [] ρ Ρ 
       ⊞-match (inj-compare j≤k i≤k) y xs  Ρ
    ≈⟨ ⊞-match-hom (inj-compare j≤k i≤k) y xs Ρ 
      ( y  j≤k  Ρ +  xs  i≤k  Ρ)
    ≈⟨ +-comm _ _ 
       xs  i≤k  Ρ + (  y  j≤k  Ρ)
    
  ⊞-inj-hom i≤k xs (y  j≤k ≠0 Δ 0 & ( ys )) ρ Ρ =
    begin
      ⅀?⟦ ⊞-match (inj-compare j≤k i≤k) y xs Δ 0 ∷↓ ( ys )  (ρ , Ρ)
    ≈⟨ ∷↓-hom-0 ((⊞-match (inj-compare j≤k i≤k) y xs)) ( ys ) ρ Ρ 
      ρ * ⅀⟦ ys  (ρ , Ρ) +  ⊞-match (inj-compare j≤k i≤k) y xs  Ρ
    ≈⟨ +≫ ⊞-match-hom (inj-compare j≤k i≤k) y xs Ρ 
      ρ * ⅀⟦ ys  (ρ , Ρ) + ( y  j≤k  Ρ +  xs  i≤k  Ρ)
    ≈⟨ sym (+-assoc _ _ _)  trans  +-comm _ _ 
       xs  i≤k  Ρ + (ρ * ⅀⟦ ys  (ρ , Ρ) +  y  j≤k  Ρ)
    
  ⊞-inj-hom i≤k xs (y Δ suc j & ys) ρ Ρ =
    begin
      ⅀?⟦ ⊞-inj i≤k xs (y Δ suc j & ys)  (ρ , Ρ)
    ≡⟨⟩
      ⅀?⟦ xs  i≤k Δ 0 ∷↓ ( y Δ j & ys )  (ρ , Ρ)
    ≈⟨ ∷↓-hom-0 (xs  i≤k) ( y Δ j & ys ) ρ Ρ 
      ρ * ⅀⟦ y Δ j & ys  (ρ , Ρ) +  xs  i≤k  Ρ
    ≈⟨ +-comm _ _ 
       xs  i≤k  Ρ + ρ * ⅀⟦ y Δ j & ys  (ρ , Ρ)
    ≈⟨ +≫ (
        begin
          ρ * ⅀⟦ y Δ j & ys  (ρ , Ρ)
        ≡⟨⟩
          ρ * (((poly y , ys) ⟦∷⟧ (ρ , Ρ)) *⟨ ρ ⟩^ j)
        ≈⟨ *≫ pow-opt _ ρ j 
          ρ * (ρ ^ j * ((poly y , ys) ⟦∷⟧ (ρ , Ρ)))
        ≈⟨ sym (*-assoc ρ _ _) 
          ρ * ρ ^ j * ((poly y , ys) ⟦∷⟧ (ρ , Ρ))
        ≈⟨ ≪* sym (pow-suc ρ j) 
          ⅀⟦ y Δ suc j & ys  (ρ , Ρ)
        ) 
       xs  i≤k  Ρ + ⅀⟦ y Δ suc j & ys  (ρ , Ρ)
    

  ⊞-coeffs-hom :  {n} (xs : Coeff n *) (ys : Coeff n *) 
                  ρ  ⅀?⟦ ⊞-coeffs xs ys  ρ  ⅀?⟦ xs  ρ + ⅀?⟦ ys  ρ
  ⊞-coeffs-hom [] ys Ρ         = sym (+-identityˡ (⅀?⟦ ys  Ρ))
  ⊞-coeffs-hom ( x Δ i & xs ) = ⊞-zip-r-hom i x xs

  ⊞-zip-hom :  {n i j}
            (c : ℕ.Ordering i j)
            (x : NonZero n)
            (xs : Coeff n *)
            (y : NonZero n)
            (ys : Coeff n *)
             ρ  ⅀?⟦ ⊞-zip c x xs y ys  ρ  ⅀⟦ x Δ i & xs  ρ + ⅀⟦ y Δ j & ys  ρ
  ⊞-zip-hom (ℕ.equal i) (x ≠0) xs (y ≠0) ys (ρ , Ρ) =
    let x′  =  x  Ρ
        y′  =  y  Ρ
        xs′ = ⅀?⟦ xs  (ρ , Ρ)
        ys′ = ⅀?⟦ ys  (ρ , Ρ)
    in
    begin
      ⅀?⟦ x  y Δ i ∷↓ ⊞-coeffs xs ys  (ρ , Ρ)
    ≈⟨ ∷↓-hom (x  y) i (⊞-coeffs xs ys) ρ Ρ 
      ρ ^ i * (((x  y) , (⊞-coeffs xs ys)) ⟦∷⟧ (ρ , Ρ))
    ≈⟨ *≫ ⟦∷⟧-hom (x  y) (⊞-coeffs xs ys) ρ Ρ 
      ρ ^ i * (ρ * ⅀?⟦ ⊞-coeffs xs ys  (ρ , Ρ) +  x  y  Ρ)
    ≈⟨ *≫ begin
           ρ * ⅀?⟦ ⊞-coeffs xs ys  (ρ , Ρ) +  x  y  Ρ
          ≈⟨ (*≫ ⊞-coeffs-hom xs ys (ρ , Ρ))  +-cong  ⊞-hom x y Ρ  
            ρ * (xs′ + ys′) + (x′ + y′)
          ≈⟨ ≪+ distribˡ ρ xs′ ys′ 
            ρ * xs′ + ρ * ys′ + (x′ + y′)
          ≈⟨ +-assoc _ _ _  trans  (+≫ (sym (+-assoc _ _ _)  trans  (≪+ +-comm _ _))) 
            ρ * xs′ + (x′ + ρ * ys′ + y′)
          ≈⟨ (+≫ +-assoc _ _ _)  trans  sym (+-assoc _ _ _) 
            (ρ * xs′ + x′) + (ρ * ys′ + y′)
           
     ρ ^ i * ((ρ * xs′ + x′) + (ρ * ys′ + y′))
    ≈⟨ distribˡ (ρ ^ i) _ _ 
      ρ ^ i * (ρ * xs′ + x′) + ρ ^ i * (ρ * ys′ + y′)
    ≈⟨ sym (pow-opt _ ρ i  +-cong  pow-opt _ ρ i) 
      (ρ * xs′ + x′) *⟨ ρ ⟩^ i + (ρ * ys′ + y′) *⟨ ρ ⟩^ i
    ≈⟨ pow-mul-cong (sym (⟦∷⟧-hom x xs ρ Ρ)) ρ i  +-cong  pow-mul-cong (sym (⟦∷⟧-hom y ys ρ Ρ)) ρ i 
      ((x , xs) ⟦∷⟧ (ρ , Ρ)) *⟨ ρ ⟩^ i + ((y , ys) ⟦∷⟧ (ρ , Ρ)) *⟨ ρ ⟩^ i
    
  ⊞-zip-hom (ℕ.less i k) x xs y ys (ρ , Ρ) = ⊞-zip-r-step-hom i k y ys x xs (ρ , Ρ)  +-comm _ _
  ⊞-zip-hom (ℕ.greater j k) = ⊞-zip-r-step-hom j k

  ⊞-zip-r-step-hom :  {n} j k
                   (x : NonZero n)
                   (xs : Coeff n *)
                   (y : NonZero n)
                   (ys : Coeff n *)
                    ρ  ⅀⟦ y Δ j & ⊞-zip-r x k xs ys  ρ  ⅀⟦ x Δ suc (j ℕ.+ k) & xs  ρ + ⅀⟦ y Δ j & ys  ρ
  ⊞-zip-r-step-hom j k x xs y ys (ρ , Ρ) =
    let x′  =  NonZero.poly x  Ρ
        y′  =  NonZero.poly y  Ρ
        xs′ = ⅀?⟦ xs  (ρ , Ρ)
        ys′ = ⅀?⟦ ys  (ρ , Ρ)
    in
    begin
      ((poly y , ⊞-zip-r x k xs ys) ⟦∷⟧ (ρ , Ρ)) *⟨ ρ ⟩^ j
    ≈⟨ pow-mul-cong (⟦∷⟧-hom (poly y) (⊞-zip-r x k xs ys) ρ Ρ) ρ j 
      (ρ * ⅀?⟦ ⊞-zip-r x k xs ys  (ρ , Ρ) + y′) *⟨ ρ ⟩^ j
    ≈⟨ pow-opt _ ρ j 
      ρ ^ j * (ρ * ⅀?⟦ ⊞-zip-r x k xs ys  (ρ , Ρ) + y′)
    ≈⟨ *≫ ≪+ *≫ (⊞-zip-r-hom k x xs ys (ρ , Ρ)  trans  (≪+ pow-mul-cong (⟦∷⟧-hom (poly x) xs ρ Ρ) ρ k)) 
      ρ ^ j * (ρ * ((ρ * xs′ + x′) *⟨ ρ ⟩^ k + ys′) + y′)
    ≈⟨ *≫ ≪+ distribˡ ρ _ _ 
      ρ ^ j * ((ρ * (ρ * xs′ + x′) *⟨ ρ ⟩^ k + ρ * ys′) + y′)
    ≈⟨ *≫ +-assoc _ _ _ 
      ρ ^ j * (ρ * (ρ * xs′ + x′) *⟨ ρ ⟩^ k + (ρ * ys′ + y′))
    ≈⟨ distribˡ _ _ _ 
      ρ ^ j * (ρ * (ρ * xs′ + x′) *⟨ ρ ⟩^ k) + ρ ^ j * (ρ * ys′ + y′)
    ≈⟨ sym (pow-opt _ ρ j)  flip +-cong 
         (begin
            ρ ^ j * (ρ * ((ρ * ⅀?⟦ xs  (ρ , Ρ) +  poly x  Ρ) *⟨ ρ ⟩^ k))
          ≈⟨ (sym (*-assoc _ _ _)  trans  (≪* sym (pow-sucʳ ρ j))) 
            ρ ^ suc j * ((ρ * ⅀?⟦ xs  (ρ , Ρ) +  poly x  Ρ) *⟨ ρ ⟩^ k)
          ≈⟨ pow-add _ _ k j 
            (ρ * ⅀?⟦ xs  (ρ , Ρ) +  poly x  Ρ) *⟨ ρ ⟩^ (k ℕ.+ suc j)
            ≡⟨ ≡.cong  i  (ρ * ⅀?⟦ xs  (ρ , Ρ) +  poly x  Ρ) *⟨ ρ ⟩^ i) (ℕₚ.+-comm k (suc j)) 
            (ρ * ⅀?⟦ xs  (ρ , Ρ) +  poly x  Ρ) *⟨ ρ ⟩^ (suc j ℕ.+ k)
          )
    
      (ρ * xs′ + x′) *⟨ ρ ⟩^ suc (j ℕ.+ k) + (ρ * ys′ + y′) *⟨ ρ ⟩^ j
    ≈⟨ pow-mul-cong (sym (⟦∷⟧-hom (poly x) xs ρ Ρ)) ρ (suc (j ℕ.+ k))  +-cong  pow-mul-cong (sym (⟦∷⟧-hom (poly y) ys ρ Ρ)) ρ j 
      ((poly x , xs) ⟦∷⟧ (ρ , Ρ)) *⟨ ρ ⟩^ suc (j ℕ.+ k) + ((poly y , ys) ⟦∷⟧ (ρ , Ρ)) *⟨ ρ ⟩^ j
    

  ⊞-zip-r-hom :  {n} i
              (x : NonZero n)
              (xs ys : Coeff n *)
              (Ρ : Carrier × Vec Carrier n)
              ⅀?⟦ ⊞-zip-r x i xs ys  (Ρ)  ⅀⟦ x Δ i & xs  ( Ρ) + ⅀?⟦ ys  ( Ρ)
  ⊞-zip-r-hom i x xs []                (ρ , Ρ) = sym (+-identityʳ _)
  ⊞-zip-r-hom i x xs ( (y Δ j) & ys )         = ⊞-zip-hom (compare i j) x xs y ys