------------------------------------------------------------------------
-- The Agda standard library
--
-- Homomorphism proofs for variables and constants over polynomials
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

open import Tactic.RingSolver.Core.Polynomial.Parameters

module Tactic.RingSolver.Core.Polynomial.Homomorphism.Variables
  {r₁ r₂ r₃ r₄}
  (homo : Homomorphism r₁ r₂ r₃ r₄)
  where

open import Data.Product         using (_,_)
open import Data.Vec.Base as Vec using (Vec)
open import Data.Fin             using (Fin)
open import Data.List.Kleene

open Homomorphism homo

open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Lemmas homo
open import Tactic.RingSolver.Core.Polynomial.Base (Homomorphism.from homo)
open import Tactic.RingSolver.Core.Polynomial.Reasoning (Homomorphism.to homo)
open import Tactic.RingSolver.Core.Polynomial.Semantics homo

ι-hom :  {n} (i : Fin n) (Ρ : Vec Carrier n)   ι i  Ρ  Vec.lookup Ρ i
ι-hom i Ρ′ = let (ρ , Ρ) = drop-1 (space≤′n i) Ρ′ in begin
   (κ Raw.1# Δ 1 ∷↓ []) ⊐↓ space≤′n i  Ρ′  ≈⟨ ⊐↓-hom (κ Raw.1# Δ 1 ∷↓ []) (space≤′n i) Ρ′ 
  ⅀?⟦ κ Raw.1# Δ 1 ∷↓ []  (ρ , Ρ)           ≈⟨ ∷↓-hom-s (κ Raw.1#) 0 [] ρ Ρ  
  ρ *  κ Raw.1#  Ρ                         ≈⟨ *≫ 1-homo 
  ρ * 1#                                     ≈⟨ *-identityʳ ρ 
  ρ                                          ≡⟨ drop-1⇒lookup i Ρ′ 
  Vec.lookup Ρ′ i